13 research outputs found

    The Monarch Initiative in 2019: an integrative data and analytic platform connecting phenotypes to genotypes across species.

    Get PDF
    In biology and biomedicine, relating phenotypic outcomes with genetic variation and environmental factors remains a challenge: patient phenotypes may not match known diseases, candidate variants may be in genes that haven\u27t been characterized, research organisms may not recapitulate human or veterinary diseases, environmental factors affecting disease outcomes are unknown or undocumented, and many resources must be queried to find potentially significant phenotypic associations. The Monarch Initiative (https://monarchinitiative.org) integrates information on genes, variants, genotypes, phenotypes and diseases in a variety of species, and allows powerful ontology-based search. We develop many widely adopted ontologies that together enable sophisticated computational analysis, mechanistic discovery and diagnostics of Mendelian diseases. Our algorithms and tools are widely used to identify animal models of human disease through phenotypic similarity, for differential diagnostics and to facilitate translational research. Launched in 2015, Monarch has grown with regards to data (new organisms, more sources, better modeling); new API and standards; ontologies (new Mondo unified disease ontology, improvements to ontologies such as HPO and uPheno); user interface (a redesigned website); and community development. Monarch data, algorithms and tools are being used and extended by resources such as GA4GH and NCATS Translator, among others, to aid mechanistic discovery and diagnostics

    Expansion of the Human Phenotype Ontology (HPO) knowledge base and resources.

    Get PDF
    The Human Phenotype Ontology (HPO)-a standardized vocabulary of phenotypic abnormalities associated with 7000+ diseases-is used by thousands of researchers, clinicians, informaticians and electronic health record systems around the world. Its detailed descriptions of clinical abnormalities and computable disease definitions have made HPO the de facto standard for deep phenotyping in the field of rare disease. The HPO\u27s interoperability with other ontologies has enabled it to be used to improve diagnostic accuracy by incorporating model organism data. It also plays a key role in the popular Exomiser tool, which identifies potential disease-causing variants from whole-exome or whole-genome sequencing data. Since the HPO was first introduced in 2008, its users have become both more numerous and more diverse. To meet these emerging needs, the project has added new content, language translations, mappings and computational tooling, as well as integrations with external community data. The HPO continues to collaborate with clinical adopters to improve specific areas of the ontology and extend standardized disease descriptions. The newly redesigned HPO website (www.human-phenotype-ontology.org) simplifies browsing terms and exploring clinical features, diseases, and human genes

    The Human Phenotype Ontology in 2017.

    Get PDF
    Deep phenotyping has been defined as the precise and comprehensive analysis of phenotypic abnormalities in which the individual components of the phenotype are observed and described. The three components of the Human Phenotype Ontology (HPO; www.human-phenotype-ontology.org) project are the phenotype vocabulary, disease-phenotype annotations and the algorithms that operate on these. These components are being used for computational deep phenotyping and precision medicine as well as integration of clinical data into translational research. The HPO is being increasingly adopted as a standard for phenotypic abnormalities by diverse groups such as international rare disease organizations, registries, clinical labs, biomedical resources, and clinical software tools and will thereby contribute toward nascent efforts at global data exchange for identifying disease etiologies. This update article reviews the progress of the HPO project since the debut Nucleic Acids Research database article in 2014, including specific areas of expansion such as common (complex) disease, new algorithms for phenotype driven genomic discovery and diagnostics, integration of cross-species mapping efforts with the Mammalian Phenotype Ontology, an improved quality control pipeline, and the addition of patient-friendly terminology

    Mathematical Modelling of Radionuclide Migration and Reliability of Natural Systems

    No full text
    анотаці

    Knowledge Engineering and Knowledge Management - EKAW 2016 Satellite Events, EKM and Drift-an-LOD, Bologna, Italy, November 19\u201323, 2016, Revised Selected Papers

    No full text
    This book contains the best selected papers of two Satellite Events held at the 20th International Conference on Knowledge Engineering and Knowledge Management, EKAW 2016, in November 2016 in Bologna, Italy: The Second International Workshop on Educational Knowledge Management, EKM 2016, and the First Workshop: Detection, Representation and Management of Concept Drift in Linked Open Data, Drift-an-LOD 2016. The 6 revised full papers included in this volume were carefully reviewed and selected from the 13 full papers that were accepted for presentation at the conference from the initial 82 submissions. This volume also contains the 37 accepted contributions for the EKAW 2016 tutorials, demo and poster sessions, and the doctoral consortium. The special focus of this year's EKAW was "evolving knowledge", which concerns all aspects of the management and acquisition of knowledge representations of evolving, contextual, and local models. This includes change management, trend detection, model evolution, streaming data and stream reasoning, event processing, time-and space dependent models, contextual and local knowledge representations with a special emphasis on the evolvability and localization of knowledge and the correct usage of these limits
    corecore