38 research outputs found

    Funcionalización convergente de nanopartículas para oncología y cardiovascular "in vivo" imágenes y terapia

    Get PDF
    Tesis inédita de la Universidad Complutense de Madrid, Facultad de Ciencias Químicas, leída el 15-07-2015La Nanomedicina consiste en el uso de las herrameintas de la nanotecnología para la resolución de problemas biomédicos. Una parte fundamental de este area de la ciencia es la funcionalización de las nanopartículas, la introducción de los ligandos adecuados para su uso in vivo. En el presente trabajo se ha llevado a cabo la síntesis, funcionalización y caracterización de Nanopartículas hidrófilas en forma de micelas. El uso de interacciones hidrófobas ha permitido la síntesis de una librería muy amplia de partículas. Según las propiedades de cada partícula se muestran aplicaciones, tanto en imagen como en terapia, en enfermedades cardiovasculares y oncológicasFac. de Ciencias QuímicasTRUEunpu

    Superparamagnetic Nanoparticles for Atherosclerosis Imaging

    Get PDF
    The production of magnetic nanoparticles of utmost quality for biomedical imaging requires several steps, from the synthesis of highly crystalline magnetic cores to the attachment of the different molecules on the surface. This last step probably plays the key role in the production of clinically useful nanomaterials. The attachment of the different biomolecules should be performed in a defined and controlled fashion, avoiding the random adsorption of the components that could lead to undesirable byproducts and ill-characterized surface composition. In this work, we review the process of creating new magnetic nanomaterials for imaging, particularly for the detection of atherosclerotic plaque, in vivo. Our focus will be in the different biofunctionalization techniques that we and several other groups have recently developed. Magnetic nanomaterial functionalization should be performed by chemoselective techniques. This approach will facilitate the application of these nanomaterials in the clinic, not as an exception, but as any other pharmacological compound.The authors thank the Spanish Ministry of Science (SAF2011-25445), the Comunidad de Madrid (S2010/BMD-2326, Inmunothercan-CM, NANOCOPD-CIBERES-CIBERBBN-SEPAR), and the EU 7th Framework Program (FP7-PEOPLE-ITN-264864 Pinet and FP7-PEOPLE-2013-ITN CardioNext).S

    Micellar Iron Oxide Nanoparticles Coated with Anti-Tumor Glycosides

    Get PDF
    The synthesis procedure of nanoparticles based on thermal degradation produces organic solvent dispersible iron oxide nanoparticles (OA-IONP) with oleic acid coating and unique physicochemical properties of the core. Some glycosides with hydrophilic sugar moieties bound to oleyl hydrophobic chains have antimitotic activity on cancer cells but reduced in vivo applications because of the intrinsic low solubility in physiological media, and are prone to enzymatic hydrolysis. In this manuscript, we have synthetized and characterized OA-IONP-based micelles encapsulated within amphiphilic bioactive glycosides. The glycoside-coated IONP micelles were tested as Magnetic Resonance Imaging (MRI) contrast agents as well as antimitotics on rat glioma (C6) and human lung carcinoma (A549) cell lines. Micelle antimitotic activity was compared with the activity of the corresponding free glycosides. In general, all OA-IONP-based micellar formulations of these glycosides maintained their anti-tumor effects, and, in one case, showed an unusual therapeutic improvement. Finally, the micelles presented optimal relaxometric properties for their use as T2-weighed MRI contrast agents. Our results suggest that these bioactive hydrophilic nano-formulations are theranostic agents with synergistic properties obtained from two entities, which separately are not ready for in vivo applications, and strengthen the possibility of using biomolecules as both a coating for OA-IONP micellar stabilization and as drugs for therapy.This research was funded by FP7 Marie Curie Pulmonary imaging network (PINET) and Ministerio de Economia y Competitividad MAT2015-65184-C2-2-R; SAF2016-79593-P; SAF2017-84494-C2-1-R). This work was partially funded by Instituto de Salud Carlos III (DTS16/00059), CNIC (Centro Nacional de Investigaciones Cardiovasculares), and Comunidad de Madrid (B2017-BMD3731 and B2017-BMD3875). We thank Ligue contre le cancer, comite Charentes Maritimes which allows to free up some time to complete the redaction of this manuscript during a grant-not dedicated on this work-agreed to LIENSs, UMR CNRS 7266, La Rochelle.S

    Immunophenotyping Reveals the Diversity of Human Dental Pulp Mesenchymal Stromal Cells In vivo and Their Evolution upon In vitro Amplification

    Get PDF
    International audienceMesenchymal stromal/stem cells (MSCs) from human dental pulp (DP) can be expanded in vitro for cell-based and regenerative dentistry therapeutic purposes. However, their heterogeneity may be a hurdle to the achievement of reproducible and predictable therapeutic outcomes. To get a better knowledge about this heterogeneity, we designed a flow cytometric strategy to analyze the phenotype of DP cells in vivo and upon in vitro expansion with stem cell markers. We focused on the CD31 − cell population to exclude endothelial and leukocytic cells. Results showed that the in vivo CD31 − DP cell population contained 1.4% of CD56 + , 1.5% of CD146 + , 2.4% of CD271 + and 6.3% of MSCA-1 + cells but very few Stro-1 + cells (≤1%). CD56 + , CD146 + , CD271 + , and MSCA-1 + cell subpopulations expressed various levels of these markers. CD146 + MSCA-1 + , CD271 + MSCA-1 + , and CD146 + CD271 + cells were the most abundant DP-MSC populations. Analysis of DP-MSCs expanded in vitro with a medicinal manufacturing approach showed that CD146 was expressed by about 50% of CD56 + , CD271 + , MSCA-1 + , and Stro-1 + cells, and MSCA-1 by 15-30% of CD56 + , CD146 + , CD271 + , and Stro-1 + cells. These ratios remained stable with passages. CD271 and Stro-1 were expressed by <1% of the expanded cell populations. Interestingly, the percentage of CD56 + cells strongly increased from P1 (25%) to P4 (80%) both in all sub-populations studied. CD146 + CD56 + , MSCA-1 + CD56 + , and CD146 + MSCA-1 + cells were the most abundant DP-MSCs at the end of P4. These results established that DP-MSCs constitute a heterogeneous mixture of cells in pulp tissue in vivo and in culture, and that their phenotype is modified upon in vitro expansion. Further studies are needed to determine whether co-expression of specific MSC markers confers DP cells specific properties that could be used for the regeneration of human tissues, including the dental pulp, with standardized cell-based medicinal products

    Phosphatidylcholine-coated iron oxide nanomicelles for in vivo prolonged circulation time with an antibiofouling protein corona

    Get PDF
    We report the synthesis of micellar phosphatidylcholine-coated superparamagnetic iron oxide nanoparticles as a new long circulation contrast agents for magnetic resonance imaging. Oleic acid-coated Fe3 O4 nanoparticles were first prepared through thermal degradation and then encapsulated into small clusters with a phosphatidylcholine coating to obtain hydrophilic nanomicelles. A thorough characterization confirmed the chemical nature of the coating and the excellent colloidal stability of these nanomicelles in aqueous media. Magnetization and relaxivity properties proved their suitability as magnetic resonance imaging (MRI) contrast agent and in vitro cell viability data showed low toxicity. Vascular lifetime and elimination kinetics in the liver were assessed by blood relaxometry and by in vivo MRI in rats and compared with "control" particles prepared with a polyethylene glycol derivative. These micellar particles had a lifetime in blood of more than 10 h, much longer than the control nanoparticles (≈2 h), which is remarkable considering that the coating molecule is a small biocompatible zwitterionic phospholipid. The protein corona was characterized after incubation with rat serum at different times by high-throughput proteomics, showing a higher proportion of bound apolipoproteins and other dysopsonins for the phosphatidylcholine particles. The antibiofouling properties of this corona and its resistance to the adsorption of proteins corroborate the observed enhanced stability and prolonged systemic circulation.This study is supported by a grant from FP7 Marie Curie, Pulmonary imaging network (PINET), by Fundacio La Maratode TV3 (70/C/2012) and by a grant from the Comunidad de Madrid (S2010/BMD-2326, Inmunothercan-CM) and by Spanish Economy Ministry (MAT2013-47303-P). We thank E. Urones (Centro Nacional de Microscopia de la Universidad Complutense de Madrid) for the transmission electronic microscopy imaging; P. Morales (Instituto de Ciencia de Materiales de la Universidad Autonoma de Madrid) for the thermogravimetric and magnetization analysis and B. Salinas (Fundacion Centro Nacional de Investigaciones Cardiovasculares and CIBER de Enfermedades Respiratorias) for the TEM picture of oleic acid coated Fe3 O4. The authors declare no competing financial interests.S

    Delayed alveolar clearance of nanoparticles through control of coating composition and interaction with lung surfactant protein A

    Get PDF
    The coating composition of nanomedicines is one of the main features in determining the medicines' fate, clearance, and immunoresponse in the body. To highlight the coatings' impact in pulmonary administration, two micellar superparamagnetic iron oxide nanoparticles (SPION) were compared. These nanoparticles are similar in size and charge but have different coatings: either phosphatidylcholine (PC-SPION) or bovine serum albumin (BSA-SPION). The aim of the study was to increase the understanding of the nano-bio interaction with the cellular and non-cellular components of the lung and underline valuable coatings either for local lung-targeted drug delivery in theranostic application or patient-friendly route systemic administration. PC-SPION and BSA-SPION were deposited in the alveoli by in vivo instillation and, despite the complexity of imaging the lung, SPION were macroscopically visualized by MRI. Impressively, PC-SPION were retained within the lungs for at least a week, while BSA-SPION were cleared more rapidly. The different lung residence times were confirmed by histological analysis and supported by a flow cytometry analysis of the SPION interactions with different myeloid cell populations. To further comprehend the way in which these nanoformulations interact with lung components at the molecular level, we used fluorescence spectroscopy, turbidity measurements, and dynamic light scattering to evaluate the interactions of the two SPION with surfactant protein A (SP-A), a key protein in setting up the nanoparticle behavior in the alveolar fluid. We found that SP-A induced aggregation of PC-SPION, but not BSA-SPION, which likely caused PC-SPION retention in the lung without inducing inflammation. In conclusion, the two SPION show different outcomes from interaction with SP-A leading to distinctive fate in the lung. PC-SPION hold great promise as imaging and theranostic agents when prolonged pulmonary drug delivery is required

    A Comparative Study of Ultrasmall Calcium Carbonate Nanoparticles for Targeting and Imaging Atherosclerotic Plaque

    Get PDF
    therosclerosis is a complex disease that can lead to life-threatening events, such as myocardial infarction and ischemic stroke. Despite the severity of this disease, diagnosing plaque vulnerability remains challenging due to the lack of effective diagnostic tools. Conventional diagnostic protocols lack specificity and fail to predict the type of atherosclerotic lesion and the risk of plaque rupture. To address this issue, technologies are emerging, such as noninvasive medical imaging of atherosclerotic plaque with customized nanotechnological solutions. Modulating the biological interactions and contrast of nanoparticles in various imaging techniques, including magnetic resonance imaging, is possible through the careful design of their physicochemical properties. However, few examples of comparative studies between nanoparticles targeting different hallmarks of atherosclerosis exist to provide information about the plaque development stage. Our work demonstrates that Gd (III)-doped amorphous calcium carbonate nanoparticles are an effective tool for these comparative studies due to their high magnetic resonance contrast and physicochemical properties. In an animal model of atherosclerosis, we compare the imaging performance of three types of nanoparticles: bare amorphous calcium carbonate and those functionalized with the ligands alendronate (for micro- calcification targeting) and trimannose (for inflammation targeting). Our study provides useful insights into ligand-mediated targeted imaging of atherosclerosis through a combination of in vivo imaging, ex vivo tissue analysis, and in vitro targeting experiments.We acknowledge M. Spuch for his scientific drawings and the Basque Government for the R&D Project in Health (grant number 2022333041). S.C.R. acknowledges the Spanish Ministerio de Ciencia e Innovación (MCIN)/Agencia Estatal de Investigación (AEI) Grant PID2019-106139RA-100 funded by MCIN/AEI/10.13039/501100011033 and the Ramon y Cajal Grant RYC2020-030241-I. C.S.C. acknowledges financial support from the Spanish State Research Agency (grant PID2020-118176RJ-I100), and the Gipuzkoa Foru Aldundia (Gipuzkoa Fellows program; grant number 2019-FELL- 000018-01/62/2019). This work was performed under the Severo Ochoa Centers of Excellence Program of the Spanish State Research Agency − Grant No. CEX2018-000867-S (DIPC). SXRF analysis was carried out with the support of Diamond Light Source, beamline I18 (proposal SP27720). J.R.C. is funded by MCIN/AEI/10.13039/501100011033 (PID2021-123238OB-I00) and from La Caixa Foundation (Health Research Call 2020: HR20-00075). A.M.G. and C.U. acknowledge the Spanish Ministerio de Ciencia e Innovación (MCIN)/Agencia Estatal de Investigación (AEI) Grant: PID2021-122504NB-I00 funded by MCIN/AEI/10.13039/ 501100011033 and by “ERDF A way of making Europe. W.J.P. acknowledges funding from the Cluster of Excellence “Advanced Imaging of Matter” of the Deutsche Forschungsge- meinschaft (DFG) - EXC 2056 - project ID 390715994. F.H. acknowledges MCIN (PID2019-104059RB-I00) and M.J.S.G. the Spanish Ministerio de Educación y Formación Profesional (PRE2018-083691). REFERENCES (1) Libby, P. The changing landscape of atherosclerosPeer reviewe

    Ultrasmall manganese ferrites for in vivo catalase mimicking activity and multimodal bioimaging

    Get PDF
    Manganese ferrite nanoparticles display interesting features in bioimaging and catalytic therapies. They have been recently used in theranostics as contrast agents in magnetic resonance imaging (MRI), and as catalase-mimicking nanozymes for hypoxia alleviation. These promising applications encourage the development of novel synthetic procedures to enhance the bioimaging and catalytic properties of these nanomaterials simultaneously. Herein, a cost-efficient synthetic microwave method is developed to manufacture ultrasmall manganese ferrite nanoparticles as advanced multimodal contrast agents in MRI and positron emission tomography (PET), and improved nanozymes. Such a synthetic method allows doping ferrites with Mn in a wide stoichiometric range (MnxFe3-xO4, 0.1 ≤ x ≤ 2.4), affording a library of nanoparticles with different magnetic relaxivities and catalytic properties. These tuned magnetic properties give rise to either positive or dual-mode MRI contrast agents. On the other hand, higher levels of Mn doping enhance the catalytic efficiency of the resulting nanozymes. Finally, through their intracellular catalase-mimicking activity, these ultrasmall manganese ferrite nanoparticles induce an unprecedented tumor growth inhibition in a breast cancer murine model. All of these results show the robust characteristics of these nanoparticles for nanobiotechnological applications.The authors thank M. Jeannin from Lasie Laboratory (La Rochelle University) for the Raman studies. S.C.R. is supported by the grant PID2019-106139RA-100 funded by MCIN. J.R.-C. is supported by grants from the Ministerio de Economía, Industria y Competitividad (MEIC) (SAF2017-84494-C2-R). J.R.C. received funding from the BBVA Foundation (PR [18]_BIO_IMG_0008) and La Caixa (HR18-00052). Y.F.-A. received funding from the Santander-Universidad Zaragoza Fellowship program. L.G. acknowledges financial support from the Ramón y Cajal program (RYC-2014-15512). CIC biomaGUNE is supported by the Maria de Maeztu Units of Excellence Program from the Spanish State Research Agency (MDM-2017-0720). The authors acknowledge the use of Servicio General de Apoyo a la Investigación-SAI, Universidad de Zaragoza. H.G. is supported by the Ligue contre le Cancer (CD16, CD17) and Région Nouvelle Aquitaine (Projet “Nanovect”). J.A.E. is supported by RTI2018-099357-B-I00, HFSP (RGP0016/2018), CIBERFES16/10/00282 and RED2018-102576-T. The CNIC is supported by the Pro-CNIC Foundation and by the Severo Ochoa of Excellence Program.Peer reviewe
    corecore