7 research outputs found

    Understanding contributors to racial and ethnic inequities in COVID-19 incidence and mortality rates

    Get PDF
    BACKGROUND: Racial inequities in Coronavirus 2019 (COVID-19) have been reported over the course of the pandemic, with Black, Hispanic/Latinx, and Native American individuals suffering higher case rates and more fatalities than their White counterparts. METHODS: We used a unique statewide dataset of confirmed COVID-19 cases across Missouri, linked with historical statewide hospital data. We examined differences by race and ethnicity in raw population-based case and mortality rates. We used patient-level regression analyses to calculate the odds of mortality based on race and ethnicity, controlling for comorbidities and other risk factors. RESULTS: As of September 10, 2020 there were 73,635 confirmed COVID-19 cases in the State of Missouri. Among the 64,526 case records (87.7% of all cases) that merged with prior demographic and health care utilization data, 12,946 (20.1%) were Non-Hispanic (NH) Black, 44,550 (69.0%) were NH White, 3,822 (5.9%) were NH Other/Unknown race, and 3,208 (5.0%) were Hispanic. Raw cumulative case rates for NH Black individuals were 1,713 per 100,000 population, compared with 2,095 for NH Other/Unknown, 903 for NH White, and 1,218 for Hispanic. Cumulative COVID-19-related death rates for NH Black individuals were 58.3 per 100,000 population, compared with 38.9 for NH Other/Unknown, 19.4 for NH White, and 14.8 for Hispanic. In a model that included insurance source, history of a social determinant billing code in the patient\u27s claims, census block travel change, population density, Area Deprivation Index, and clinical comorbidities, NH Black race (OR 1.75, 1.51-2.04, p\u3c0.001) and NH Other/Unknown race (OR 1.83, 1.36-2.46, p\u3c0.001) remained strongly associated with mortality. CONCLUSIONS: In Missouri, COVID-19 case rates and mortality rates were markedly higher among NH Black and NH Other/Unknown race than among NH White residents, even after accounting for social and clinical risk, population density, and travel patterns during COVID-19

    Geologic overview of the Mars Science Laboratory rover mission at the Kimberley, Gale crater, Mars

    Get PDF
    International audienceThe Mars Science Laboratory (MSL) Curiosity rover completed a detailed investigation at the Kimberley waypoint within Gale crater from sols 571-634 using its full science instrument payload. From orbital images examined early in the Curiosity mission, the Kimberley region had been identified as a high-priority science target based on its clear stratigraphic relationships in a layered sedimentary sequence that had been exposed by differential erosion. Observations of the stratigraphic sequence at the Kimberley made by Curiosity are consistent with deposition in a prograding, fluvio-deltaic system during the late Noachian to early Hesperian, prior to the existence of most of Mount Sharp. Geochemical and mineralogic analyses suggest that sediment deposition likely took place under cold conditions with relatively low water-to-rock ratios. Based on elevated K 2 O abundances throughout the Kimberley formation, an alkali feldspar protolith is likely one of several igneous sources from which the sediments were derived. After deposition, the rocks underwent multiple episodes of diagenetic alteration with different aqueous chemistries and redox conditions, as evidenced by the presence of Ca-sulfate veins, Mn-oxide fracture fills, and erosion-resistant nodules. More recently, the Kimberley has been subject to significant aeolian abrasion and removal of sediments to create modern topography that slopes away from Mount Sharp, a process that has continued to the present day

    Gale crater and impact processes – Curiosity’s first 364 Sols on Mars

    No full text
    Impact processes at all scales have been involved in the formation and subsequent evolution of Gale crater. Small impact craters in the vicinity of the Curiosity MSL landing site and rover traverse during the 364 Sols after landing have been studied both from orbit and the surface. Evidence for the effect of impacts on basement outcrops may include loose blocks of sandstone and conglomerate, and disrupted (fractured) sedimentary layers, which are not obviously displaced by erosion. Impact ejecta blankets are likely to be present, but in the absence of distinct glass or impact melt phases are difficult to distinguish from sedimentary/volcaniclastic breccia and conglomerate deposits. The occurrence of individual blocks with diverse petrological characteristics, including igneous textures, have been identified across the surface of Bradbury Rise, and some of these blocks may represent distal ejecta from larger craters in the vicinity of Gale. Distal ejecta may also occur in the form of impact spherules identified in the sediments and drift material. Possible examples of impactites in the form of shatter cones, shocked rocks, and ropy textured fragments of materials that may have been molten have been observed, but cannot be uniquely confirmed. Modification by aeolian processes of craters smaller than 40 m in diameter observed in this study, are indicated by erosion of crater rims, and infill of craters with aeolian and airfall dust deposits. Estimates for resurfacing suggest that craters less than 15 m in diameter may represent steady state between production and destruction. The smallest candidate impact crater observed is ~0.6 m in diameter. The observed crater record and other data are consistent with a resurfacing rate of the order of 10 mm/Myr; considerably greater than the rate from impact cratering alone, but remarkably lower than terrestrial erosion rates

    Isotope ratios of H, C, and O in CO2 and H2O of the Martian atmosphere

    Get PDF
    Stable isotope ratios of H, C, and O are powerful indicators of a wide variety of planetary geophysical processes, and for Mars they reveal the record of loss of its atmosphere and subsequent interactions with its surface such as carbonate formation. We report in situ measurements of the isotopic ratios of D/H and O-18/O-16 in water and C-13/C-12, O-18/O-16, O-17/O-16, and (CO)-C-13-O-18/(CO)-C-12-O-16 in carbon dioxide, made in the martian atmosphere at Gale Crater from the Curiosity rover using the Sample Analysis at Mars (SAM)'s tunable laser spectrometer (TLS). Comparison between our measurements in the modern atmosphere and those of martian meteorites such as ALH 84001 implies that the martian reservoirs of CO2 and H2O were largely established similar to 4 billion years ago, but that atmospheric loss or surface interaction may be still ongoing
    corecore