141 research outputs found
A dual output polarimeter devoted to the study of the Cosmic Microwave Background
We have developed a correlation radiometer at 33 GHz devoted to the search
for residual polarization of the Cosmic Microwave Background (CMB). The two
instruments`s outputs are linear combination of two Stokes Parameters (Q and U
or U and V). The instrument is therefore directly sensitive to the polarized
component of the radiation (respectively linear and circular). The radiometer
has a beam-width oif 7 or 14 deg, but it can be coupled to a telescope
increasing the resolution. The expected CMB polarization is at most a part per
milion. The polarimeter has been designed to be sensitive to this faint signal,
and it has been optimized to improve its long term stability, observing from
the ground. In this contribution the performances of the instrument are
presented, together with the preliminary test and observations.Comment: 12 pages, 6 figures, in print on the Proc. SPIE Conf. - August 200
Mapping Patent Classifications: Portfolio and Statistical Analysis, and the Comparison of Strengths and Weaknesses
The Cooperative Patent Classifications (CPC) jointly developed by the
European and US Patent Offices provide a new basis for mapping and portfolio
analysis. This update provides an occasion for rethinking the parameter
choices. The new maps are significantly different from previous ones, although
this may not always be obvious on visual inspection. Since these maps are
statistical constructs based on index terms, their quality--as different from
utility--can only be controlled discursively. We provide nested maps online and
a routine for portfolio overlays and further statistical analysis. We add a new
tool for "difference maps" which is illustrated by comparing the portfolios of
patents granted to Novartis and MSD in 2016.Comment: Scientometrics 112(3) (2017) 1573-1591;
http://link.springer.com/article/10.1007/s11192-017-2449-
Pediatric Intensive Care Unit admission criteria for haemato-oncological patients: a basis for clinical guidelines implementation
Recent advances in supportive care and progress in the development and use of chemotherapy have considerably improved the prognosis of many children with malignancy, thus the need for intensive care admission and management is increasing, reaching about 40% of patients throughout the disease course. Cancer remains a major death cause in children, though outcomes have considerably improved over the past decades. Prediction of outcome for children with cancer in Pediatric Intensive Care Unit (PICU) obviously requires clinical guidelines, and these are not well defined, as well as admission criteria. Major determinants of negative outcomes remain severe sepsis/septic shock association and respiratory failure, deserving specific approach in children with cancer, particularly those receiving a bone marrow transplantation. A nationwide consensus should be achieved among pediatric intensivists and oncologists regarding the threshold clinical conditions requiring Intensive Care Unit (ICU) admission as well as specific critical care protocols. As demonstrated for the critically ill non-oncologic child, it appears unreasonable that pediatric patients with malignancy can be admitted to an adult Intensive Care Unit ICU. On a national basis a pool of refecence institutions should be identified and early referral to an oncologic PICU is warranted
Progress in EU-DEMO in-vessel components integration
In the EU DEMO design (Romanelli, 2012; Federici et al., 2014), due to the large number of complex systems inside the tokamak vessel it is of vital importance to address the in-vessel integration at an early stage in the design process. In the EU DEMO design, after a first phase in which the different systems have been developed independently based on the defined baseline DEMO configuration, an effort has been made to define the interface requirements and to propose the strategies for the mechanical integration of the auxiliary heating and fuelling systems into the Vacuum Vessel and the Breeding Blanket. This work presents the options studied, the engineering solutions proposed, and the issues highlighted for the mechanical in-vessel integration of the DEMO fuelling lines, auxiliaries heating systems, and diagnostics
Current drive at plasma densities required for thermonuclear reactors
Progress in thermonuclear fusion energy research based on deuterium plasmas magnetically confined in toroidal tokamak devices requires the development of efficient current drive methods. Previous experiments have shown that plasma current can be driven effectively by externally launched radio frequency power coupled to lower hybrid plasma waves. However, at the high plasma densities required for fusion power plants, the coupled radio frequency power does not penetrate into the plasma core, possibly because of strong wave interactions with the plasma edge. Here we show experiments performed on FTU (Frascati Tokamak Upgrade) based on theoretical predictions that nonlinear interactions diminish when the peripheral plasma electron temperature is high, allowing significant wave penetration at high density. The results show that the coupled radio frequency power can penetrate into high-density plasmas due to weaker plasma edge effects, thus extending the effective range of lower hybrid current drive towards the domain relevant for fusion reactors
- …