

Diamond window for the ITER EC H&CD Upper Launcher -Status of design, testing and qualification

G. Aiello, G. Grossetti, F. Mazzocchi, A. Meier, T. Scherer, S. Schreck, P. Spaeh, D. Strauss, A. Vaccaro

Institute for Applied Materials – Applied Materials Physics

Outline

- The ITER EC H&CD Upper Launcher
- Design philosophy of the window unit
- Design optimized by FEM analyses and ASME code
- Assembling sequence of the unit
- Qualification program
- First results of qualification
- Conclusions and outlook

The ITER EC H&CD Upper Launcher

3

Institute for Applied Materials

Optimization by FEM analyses

- Lower seismic loads acting on the units.
- Design more compact and feasible to manufacture.
- Second tritium barrier and realtime monitoring of interspaces.

Application of ASME III – NC

- Lower number of joints.
- No steps at the joint locations (full penetration butt joints).
- Reduction of the EB welding thickness.
- Design affected by the requirements of examination (joints fully radiographed).

23.09.16 G. Aiello -

7

Exploded view of the window unit

Institute for Applied Materials

Assembling sequence of the unit

Assembling sequence of the unit

Assembling sequence of the unit

Window qualification program

- The window unit cannot be entirely covered by Codes & Standards.
- Functional, design, safety, operational, quality requirements (*Component Requirements Document*) and requirements related to the loading conditions (*Component Load Specification*) are being defined for the unit.

- Procedure and acceptance criteria for qualification of welded joints.
- Procedure and acceptance criteria for NDE of welded joints.
- Design criteria and allowable limits for the metallic parts.

- Dedicated testing program being developed in the context of F4E-OPE467.
- Design criterion based on the fracture mechanics method for the diamond disc.

Design criteria for metallic parts

	Loading Category	Category I: Opera- tional/Design Load- ing	Category II: Likely Loading	Category III: L likely Loadin	Un- tremely Unlikely Loading	Test L	oading	Damage limits			
	Diamond window unit	Normal	Normal	Emergency	Faulted	Norn	nal/test	Damage infitts			
_											
	Unit part	S Damage II	mits Structural se	rvice criteria							
		Normal/T	est N/	Ά							
	Disc	Emerger	ncy N/	A							
		Faulted	D N/	A	Correlation	dam	limits – ASMF serv	vice levels			
	Cuffs	Normal/ I	est ASME								
		Enlerger	A ASME								
		Normal/T	est ASME	level A							
	Cooling riv	Emerger	ASME	aval C							
_							ID	Design criteria			
\$	Structural	service criteria	Stress intensity k factor				1	P _m ≤ kS _m			
	ASME Level A		1.0				2	P∟ ≤ 1.5kS _m			
	ASM	E Level C	1.2				3	$P_{\rm L} + P_{\rm h} \le 1.5 \text{kS}_{}$	1		
	ASME Level D		2.0				<u> </u>		4		
							4	$P_L + P_b + Q \leq 3S_m$			

• Mechanical load: criteria #1, #2 and #3.

5

• Mechanical + thermal load: criteria #1, #2, #3 and #4.

 $P_L + P_b + Q + F \le S_a$

• Fatigue load: criterion #5.

Design criterion for the diamond disc

Failure to fracture is the main failure mode to be considered for the diamond disc.

Testing program for the window prototype

- DISC Geometrical check (d, D, surface roughness)
 - Optical check (cracks, impurities)
 - Mechanical check (bow)
 - Tanδ check (disc area mapping and at center)
- Geometrical check (e.g., cuffs centricity) C **BRAZED DIS**
 - Optical check
 - Mechanical check (bow after brazing)
 - Vacuum leakage check for braze
 - Braze inspection (CT)
 - Tanδ check at disc center
 - Geometrical check
 - Tanδ check at disc center
 - High power MW test (short and long pulse)
 - Vacuum leakage check for all joints

- Cooling pressure testing
- Permeation test by Deuterium
- Seismic test
- Overpressure test

ASSEMBLY

BARE

Qualification of the bare discs

Laser engraving for identification

Parameter	T02-DM	T03-DM	Specification
diameter	79.95 mm	79.96 mm	80 mm
			(+0.2/-0.2 mm)
thickness			1.11 mm
(central)	1.1149 mm	1.1148 mm	(+0.005mm/
(contrar)			-0.000mm)
planarity	0.52 um	0.83.um	
nucleation side	0.02 µm	1.42 um	10 µm
growth side	0.00 μm	1.45 µm	
Ra roughness			
nucleation side	3.86 nm	4.13 nm	20 nm
growth side	2.11 nm	3.91 nm	
permittivity ε _r	5.67	5.67	5.67
loss tan δ			
@ 170 GHz	1.4·10 ⁻⁵	1.3·10 ⁻⁵	3.5·10 ⁻⁵ ±5·10 ⁻⁶
(mean D50)			
loss tanδ		_	
@ 170 GHz	2.6·10 ⁻⁵	2.5·10 ⁻⁵	6·10 ⁻⁵ ±1·10 ⁻⁵
(mean D90)			
Central	(3.6±0.9)·10 ⁻⁶	(4.2±1.1)·10 ⁻⁶	
loss tanδ	@169.57 GHz	@169.58 GHz	

Brazed disc inspection at KIT by CT

Top side of the diamond disc

Conclusions and outlook

- The design of the window unit was optimized by FEM analyses and in accordance with the ASME III - NC.
- The window unit shall be qualified by the ASME code and a specific program.
- Definition of the specific qualification program is on going and first results were obtained.
- Technical Specifications for the manufacturing of the window prototype are approaching the final phase in order to start the call for tender by F4E.

This work was/is partly supported by Fusion for Energy under the contract No. F4E-2010-GRT615 and F4E-2013-OPE467. The views and opinions expressed herein reflect only the author's views. Fusion for Energy is not liable for any use that may be made of the information contained therein.