4 research outputs found
Genome-wide association study identifies 74 loci associated with educational attainment
Educational attainment is strongly influenced by social and other environmental factors, but genetic factors are estimated to account for at least 20% of the variation across individuals1. Here we report the results of a genome-wide association study (GWAS) for educational attainment that extends our earlier discovery sample1,2 of 101,069 individuals to 293,723 individuals, and a replication study in an independent sample of 111,349 individuals from the UK Biobank. We identify 74 genome-wide significant loci associated with the number of years of schooling completed. Single-nucleotide polymorphisms associated with educational attainment are disproportionately found in genomic regions regulating gene expression in the fetal brain. Candidate genes are preferentially expressed in neural tissue, especially during the prenatal period, and enriched for biological pathways involved in neural development. Our findings demonstrate that, even for a behavioural phenotype that is mostly environmentally determined, a well-powered GWAS identifies replicable associated genetic variants that suggest biologically relevant pathways. Because educational attainment is measured in large numbers of individuals, it will continue to be useful as a proxy phenotype in efforts to characterize the genetic influences of related phenotypes, including cognition and neuropsychiatric diseases
Multivariate estimation of factor structures of complex traits using SNP-based genomic relationships.
Funder: NIHR Cambridge BRCBACKGROUND: Heritability and genetic correlation can be estimated from genome-wide single-nucleotide polymorphism (SNP) data using various methods. We recently developed multivariate genomic-relatedness-based restricted maximum likelihood (MGREML) for statistically and computationally efficient estimation of SNP-based heritability ([Formula: see text]) and genetic correlation ([Formula: see text]) across many traits in large datasets. Here, we extend MGREML by allowing it to fit and perform tests on user-specified factor models, while preserving the low computational complexity. RESULTS: Using simulations, we show that MGREML yields consistent estimates and valid inferences for such factor models at low computational cost (e.g., for data on 50 traits and 20,000 individuals, a saturated model involving 50 [Formula: see text]'s, 1225 [Formula: see text]'s, and 50 fixed effects is estimated and compared to a restricted model in less than one hour on a single notebook with two 2.7 GHz cores and 16 GB of RAM). Using repeated measures of height and body mass index from the US Health and Retirement Study, we illustrate the ability of MGREML to estimate a factor model and test whether it fits the data better than a nested model. The MGREML tool, the simulation code, and an extensive tutorial are freely available at https://github.com/devlaming/mgreml/ . CONCLUSION: MGREML can now be used to estimate multivariate factor structures and perform inferences on such factor models at low computational cost. This new feature enables simple structural equation modeling using MGREML, allowing researchers to specify, estimate, and compare genetic factor models of their choosing using SNP data