395 research outputs found

    Long Term Nutrient Loads Entering European Seas

    Get PDF
    In 2008, DG ENV invited the JRC to conduct a three year study on the impact of EU environmental legislation on nutrient loads to European Seas. The objective of the study was to perform a long term retrospective analysis (20 years) of land based nutrient loads in European Seas to assess the effectiveness of the EU environmental policies and other management plans adopted by countries with rivers discharging in European Seas, and assess future scenarios linked to alternative management plans different policies to control nutrient loading. The focus is both on the nutrient loading to the sea and the inland response to various policies. The first phase of the study focused on setting up the methodology for year 2000. The work concentrated on data collection and model development. The present report focused on the retrospective analysis including trend analysis (1985-2005). The report describes the change in time of the nutrient loads and their origin, entering European Seas.JRC.DDG.H.5-Rural, water and ecosystem resource

    Spatialised European Nutrient Balance

    Get PDF
    This report describes the estimation of the spatialised nutrient inputs from agriculture and nutrient surplus at the soil surface. Statistical agricultural data from the Farm Structure Survey (FSS) were linked to the spatial information of the CORINE Land Cover 2000 map, producing a European map (EU15) of land use including the crop spatial distribution, consistent with the official crops areas reported by FSS. Nitrogen and phosphorus inputs on soils originating from agriculture were estimated for EU15, and then spatialised based on the land use map, providing European maps of nitrogen and phosphorus mineral fertiliser input, manure application and gross balance at 10 km2 resolution. These maps allow the assessment of nutrient pressures originating from agriculture and constitute a reliable data layer for risk analysis and for process-based models, addressing water and soil qualityJRC.H.5-Rural, water and ecosystem resource

    Assessing water ecosystem services for water resource management

    Get PDF
    AbstractEcosystem service concepts can offer a valuable approach for linking human and nature, and arguments for the conservation and restoration of natural ecosystems. Despite an increasing interest in the topic, the application of these concepts for water resource management has been hampered by the lack of practical definitions and methodologies. In this study we review and analyse the current literature and propose an approach for assessing and valuing ecosystem services in the context of water management. In particular, to study the link between multiple pressures, ecological status and delivery of ecosystem services in aquatic ecosystems under different scenarios of measures or future changes. This is of interest for the development of River Basin Management Plans under the EU Water Framework Directive. We provide a list of proxies/indicators of natural capacity, actual flow and social benefit for the biophysical assessment of the ecosystem services. We advocate the use of indicators of sustainability, combining information on capacity and flow of services. We also suggest methods for economic valuation of aquatic ecosystem for each service and spatial scale of application. We argue that biophysical assessment and economic valuation should be conducted jointly to account for the different values of ecosystem services (ecologic, social and economic) and to strengthen the recognition of human dependency on nature. The proposed approach can be used for assessing the benefits of conservation and restoration of aquatic ecosystems in the implementation of the EU water policy

    50 year trends in nitrogen use efficiency of world cropping systems: the relationship between yield and nitrogen input to cropland

    Get PDF
    International audienceNitrogen (N) is crucial for crop productivity. However, nowadays more than half of the N added to cropland is lost to the environment, wasting the resource, producing threats to air, water, soil and biodiversity, and generating greenhouse gas emissions. Based on FAO data, we have reconstructed the trajectory followed, in the past 50 years, by 124 countries in terms of crop yield and total nitrogen inputs to cropland (manure, synthetic fertilizer, symbiotic fixation and atmospheric deposition). During the last five decades, the response of agricultural systems to increased nitrogen fertilization has evolved differently in the different world countries. While some countries have improved their agro-environmental performances, in others the increased fertilization has produced low agronomical benefits and higher environmental losses. Our data also suggest that, in general, those countries using a higher proportion of N inputs from symbiotic N fixation rather than from synthetic fertilizer have a better N use efficiency

    Scenario analysis for nutrient emission reduction in the European inland waters

    Get PDF
    International audienceDespite a large body of legislation, high nutrient loads are still emitted in European inland waters. In the present study we evaluate a set of alternative scenarios aiming at reducing nitrogen and phosphorus emissions from anthropogenic activities to all European Seas. In particular, we tested the full implementation of the European Urban Waste Water Directive, which controls emissions from point source. In addition, we associated the full implementation of this Directive with a ban of phosphorus-based laundry detergents. Then we tested two human diet scenarios and their impacts on nutrient emissions. We also developed a scenario based on an optimal use of organic manure. The impacts of all our scenarios were evaluated using a statistical model of nitrogen and phosphorus fate (GREEN) linked to an agro-economic model (CAPRI). We show that the ban of phosphorus-based laundry detergents coupled with the full implementation of the Urban Waste Water Directive is the most effective approach for reducing phosphorus emissions from human based activities. Concerning nitrogen, the highest reductions are obtained with the optimized use of organic manure

    Report on the biogeochemical model of the North-Western European Shelf

    Get PDF
    The report presents the background of the newly developed marine model covering the North and Celtic Sea. The 3d-model includes all relevant hydrodynamical drivers (tides, currents, water temperature and salinity) and a biogeochemical model of the lower trophic foodweb including essential dissolved nutrients (nitrate, ammonium, phosphate, silicate, carbon and oxygen) and several phytoplankton groups. The moel results are mainly assessed for the indicators, used for the assessment of descriptor 5 ("eutrophication") within the EU Marine Strategy Framwork Directive (MSFD). The coupled model was used to simulate the present state (covering the period 2005 - 2012) and its results are compared and validated, using a variety of different datasets of observations.JRC.D.2-Water and Marine Resource

    Quantification of asbestos and other mineral phase burden in necroscopic human lung tissues with a new method

    Get PDF
    Background: A large amount of studies on asbestos exposure reconstruction have been so far conducted digesting the lung tissues with appropriate reagents, separating the powder from the digestion liquid by filtration and analysing the residue by optical or electron microscopy. This analytical approach has good sensitivity but is not yet well standardized, the investigated portion is not representative of the bulk sample, the results are often characterized by lack of reproducibility and repeatability. Moreover, the numeric quantification of asbestos requires a time-consuming particle by particle analysis. Aim: to develop a new method for the complete quantitative characterization of asbestos and other mineral phases in human lung tissue. Methods: The new method is based on sodium hypochlorite digestion, separation and XRPD analysis. The XRPD approach needs moderate lung tissue amounts (at least 20 g of wet tissue), but allows to conduct a complete quantitative characterization of each crystalline phase in the sample giving bulk-representative results with good reproducibility, accuracy and precision. The detection limit of conventional XRPD was considerably improved by a novel instrumental setting and weight concentrations can be obtained, giving additional information to numeric ones, preferable in clinical and pathogenetic studies but probably not for the exposure reconstruction. Results: Among the analysed autoptic lung tissues, ten samples belonged to subjects occupationally exposed to asbestos and six were collected from urban area controls. Asbestos phases were detected in none of controls and in 5 of 10 occupationally exposed subjects (those with highest exposure history) indicating that this method is suitable for the reconstruction of medium and high asbestos exposures. It has been furthermore confirmed the mineral association found in previous studies: mainly composed by quartz, talc, clay minerals, micas, Fe-Al-Ti oxides and bio-minerals such Ca-phosphates, carbonates and oxalates

    Modelling nutrient pollution in the Danube River Basin: a comparative study of SWAT, MONERIS and GREEN models

    Get PDF
    The Water Framework Directive requires the development and implementation of river basin management plans for improving the ecological status of freshwater bodies throughout Europe. The scientific community supports this process by developing decision-support tools for identifying the principal sources of water pollution. Models, however, are imperfect representations of the real world, and are conditioned by structural uncertainty, implicit in the description of biophysical processes, and data uncertainty, as well as in the various restrictions of the environmental data the models were developed. Hence, decision makers must plan management actions on the basis of the best available, however still incomplete, knowledge. The comparison of independent assessments may offer insights that are useful for decision-making, e.g. for identifying knowledge gaps, identifying data uncertainties, consolidating investigation results, and increasing stakeholders’ acceptance. The Danube River is the second largest and most international river of Europe. Its basin covers approximately 803,000 km2 of Central and South-Eastern Europe and is shared by 19 countries. Within the context of fostering scientific collaboration in the Danube region and under the auspices of the International Commission for the Danube River Protection (ICPDR), three independent model (SWAT, MONERIS and GREEN) were compared with the objective of reaching a shared appraisal of nutrient pressures and drivers in the Danube Basin. Annual water discharge (Flow, m3/s) as well as annual loads of total nitrogen (TN, ton/y) and total phosphorus (TP, ton/y) were compared at the outlet of 18 ICPDR regions for the decade 2000-2009. For each region, mean annual values, correlation, standard deviation, and root mean square error of model simulations were analysed. Good water discharge simulations across the basin confirmed that hydrology was correctly represented in all models. The nutrients comparison revealed for some assessment regions the need for a spatially and temporarily intensified monitoring especially for TN. Concerning TP, SWAT and MONERIS had comparable long mean annual TP loads, but differed for amplitude and phases; while GREEN generally overestimated TP loads. Despite differences in model approaches and considered input data, the three assessments were coherent, and all three models may be confidently used for river basin management of the region.JRC.H.1-Water Resource

    Annual green water resources and vegetation resilience indicators: Definitions, mutual relationships, and future climate projections

    Get PDF
    Satellites offer a privileged view on terrestrial ecosystems and a unique possibility to evaluate their status, their resilience and the reliability of the services they provide. In this study, we introduce two indicators for estimating the resilience of terrestrial ecosystems from the local to the global levels. We use the Normalized Differential Vegetation Index (NDVI) time series to estimate annual vegetation primary production resilience. We use annual precipitation time series to estimate annual green water resource resilience. Resilience estimation is achieved through the annual production resilience indicator, originally developed in agricultural science, which is formally derived from the original ecological definition of resilience i.e., the largest stress that the system can absorb without losing its function. Interestingly, we find coherent relationships between annual green water resource resilience and vegetation primary production resilience over a wide range of world biomes, suggesting that green water resource resilience contributes to determining vegetation primary production resilience. Finally, we estimate the changes of green water resource resilience due to climate change using results from the sixth phase of the Coupled Model Inter-comparison Project (CMIP6) and discuss the potential consequences of global warming for ecosystem service reliability.Fil: Zampieri, Matteo. Joint Research Centre; ItaliaFil: Grizzetti, Bruna. Joint Research Centre; ItaliaFil: Meroni, Michele. Joint Research Centre; ItaliaFil: Scoccimarro, Enrico. No especifĂ­ca;Fil: Vrieling, Anton. No especifĂ­ca;Fil: Naumann, Gustavo. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; ArgentinaFil: Toreti, Andrea. Joint Research Centre; Itali
    • …
    corecore