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Abstract: Satellites offer a privileged view on terrestrial ecosystems and a unique possibility to
evaluate their status, their resilience and the reliability of the services they provide. In this study,
we introduce two indicators for estimating the resilience of terrestrial ecosystems from the local
to the global levels. We use the Normalized Differential Vegetation Index (NDVI) time series to
estimate annual vegetation primary production resilience. We use annual precipitation time series
to estimate annual green water resource resilience. Resilience estimation is achieved through the
annual production resilience indicator, originally developed in agricultural science, which is formally
derived from the original ecological definition of resilience i.e., the largest stress that the system can
absorb without losing its function. Interestingly, we find coherent relationships between annual
green water resource resilience and vegetation primary production resilience over a wide range of
world biomes, suggesting that green water resource resilience contributes to determining vegetation
primary production resilience. Finally, we estimate the changes of green water resource resilience due
to climate change using results from the sixth phase of the Coupled Model Inter-comparison Project
(CMIP6) and discuss the potential consequences of global warming for ecosystem service reliability.

Keywords: ecosystem services; precipitation; NDVI; water resources; primary production;
resilience indicator; stability; reliability

1. Introduction

The contribution of ecosystems to human well-being has received growing attention in the public
and scientific domains. Following the multilateral treaty of the 1992 International Convention on
Biological Diversity of the United Nations, the 2010 Conference of Parties (COP 10) formally engaged
on a strategic plan to “take effective and urgent action to halt the loss of biodiversity in order to ensure
that by 2020 ecosystems are resilient and continue to provide essential services”, explicitly recognizing
the need for resilient ecosystems, able to withstand the increasing pressure from climate change and
anthropization. More recently, in 2015, world leaders adopted the Sustainable Development Goals
(SDG), which among others include climate action (SDG13) and life on land (SDG 15) to ensure
conservation and restoration of vegetation and sustainable use of the related ecosystems services [1].

The scientific community has provided evidence on the key role of ecosystems for human
well-being [2], and has discussed the economic valuation of ecosystem services to mainstream their
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value into the decision-making process, with the intent to support their conservation, restoration and
sustainable use [3–5]. The assessment and valuation of ecosystem services and their changes over time
have been the focus of many scientific studies and projects from the global [6,7] to the regional [8,9]
and the local scale [10]. Terrestrial ecosystems in good ecological status have been found to [5]:

• Protect from erosion and landslides.
• Protect from inland flooding.
• Buffer natural resources against drier and more variable climates.
• Reduce risks and impacts of wildfires.
• Protect from coastal hazards and sea level rise.
• Moderate urban heatwaves and heat island effects.
• Managing stormwater and flooding in urban areas.

However, how to measure terrestrial ecosystems’ ecological status and their ability to withstand the
increasing pressure of climate change and anthropization—i.e., their resilience—is still an open question.

Data from satellite remote sensing have been increasingly adopted for assessing vegetation
resilience and ecosystem services, as they can provide information on the land cover typology,
extent and characteristics at different points in time, and from the local to the global scale [11,12].
Remotely sensed data can be used to define vegetation indexes such as the Normalized Difference
Vegetation Index (NDVI) that is strongly correlated with the photosynthetic activity of the plant
canopies [13]. The NDVI is frequently used to assess ecological responses of vegetation to climatic
conditions and environmental changes [12,14,15] and has often been adopted as proxy for ecosystem
services [16–20].

The NDVI was used as a key indicator in a wide range of ecosystem services including (according to
the Millennium Ecosystem Assessment classification): provisioning services, such as energy, food,
raw materials, water provisioning, and genetic resources; regulating services, such as climate
regulation, disturbance regulation, erosion regulation, flood regulation, hazard regulation, pollination,
water purification, and waste treatment; supporting services, such as biological refugia, habitat,
primary production in sea and rivers; cultural ecosystem services, such as cultural heritage and
recreation [21].

Until recently the focus has been mainly on the assessment of the current flow of ecosystem
services and their relative changes compared to past conditions [6,22], which has been possible by the
availability of satellite data time series. Given the importance of ecosystem resilience for the reliability
of the provided services, several studies have addressed the resilience of ecosystems through indicators
of ecosystem stability [23,24]. However, additional research is needed to quantify the resilience of
ecosystems to environmental change in spatially explicit assessments [25].

Here, we focus on the estimation of terrestrial ecosystem resilience related to the stability of
primary production, which is generally recognized as one of the main constituent of ecosystem
resilience [26]. We estimate vegetation primary production resilience by means of the NDVI and its
inter-annual variability. More specifically, we adopt the recently proposed indicator for annual crop
production resilience [27]. This indicator is derived from the original ecological definition of resilience
i.e., the measure of the largest stress that the system can absorb without losing its function [28].
We apply the annual resilience indicator to remotely sensed NDVI, as proxy of vegetation primary
production. Furthermore, we apply the annual resilience indicator to ground-based precipitation data,
as proxy of annual green water resources (i.e., the water available to plants [29]).

We show and discuss three main results.

1. Validity of the fundamental principle of the resilience indicator [27] applied to precipitation,
i.e., its proportionality with drought return times.

2. Relationship between the water resource resilience indicator and the vegetation primary
production resilience.

3. Changes of green water resource resilience due to global warming.
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2. Materials and Methods

The original meaning of the term resilience—first introduced in ecology—refers to the largest
pressure that a system can cope with without changing its internal structure and losing its functioning
capacity [28,30]. While the concept of resilience has evolved in complexity while spreading into
other fields such as engineering and social sciences, a recent study [27] brought back the original
ecological definition of resilience. The only assumption of that study is that severe shocks are rarer
than moderate perturbances. This allows measuring the severity of the shock by its return period and
to formally derive a consistent statistical indicator that can be computed on annual production time
series [27]. This section summarizes the main properties of the resilience indicator (RC) and introduces
its application to NDVI and precipitation data.

2.1. Annual Crop Production Resilience Indicator (RC): Definition and Properties

The resilience indicator for annual crop production [27] is defined as the squared mean divided
by the squared standard deviation of annual production time series:

RC = µ2/σ2, (1)

It has been demonstrated [27] that the RC indicator provides several advantages:

1. It is formally derived from the ecological definition of resilience, thus, theoretically more grounded
than similar indicators based on different functions of the µ over σ ratio such as the coefficient
of variance.

2. It is inversely/directly proportional to the frequency/return period of the extreme events leading
to large production losses.

3. It takes into account spatial heterogeneities and diversity in a simple and intuitive manner
i.e., RC computed on the sum of n uncorrelated time series with same µ and σ is exactly n-times
RC of the individual time series.

4. It is simple to compute, and it can take into account the effects of non-linear long-term trends
easily e.g., by normalizing the time series by the running mean baseline values prior to the
indicator computation.

Unfortunately, RC suffers from the disadvantage of requiring relatively long time series for an
accurate estimation of resilience. For normally distributed variables, a sample size over 30 values is
typically needed to compute RC with and accuracy of 30% [27].

2.2. Annual Green Water Resources Resilience Indicator (RP): Definition and Data

The annual green water resources resilience indicator (RP) follows the same formulation as the RC
indicator (Equation (1)) but it is computed using annual precipitation data i.e., the main input variable
that defines the so-called green water [29]. In this work, we use global precipitation data since 1901 at
half-degree spatial resolution from the Climate Research Unit (CRU) archive [31].

We test the rationale behind the RC indicator applied on precipitation (i.e., point 2 of Section 2.1)
by comparing RP values to the frequency of meteorological drought estimated independently with the
Weighted Anomaly of Standardized Precipitation (WASP) index [32,33] (i.e., the same data used in
Figure 3 of Carrão et al.’s paper [33]).

To provide a preliminary estimate of future change of water resource resilience due to climate
change, we compute RP using data from the sixth phase of the Coupled Model Inter-comparison Project
(CMIP6). At the time this analysis has been developed, climate change simulations performed by six
climate models (CanESM5, CNRM-CM6, IPSL-CM6A-LR, MIROC6, MRI-ESM2-0 and UKESM1-0-LL)
were available for the historical period (1850–2014) and Shared Socio-economic Pathways SSP585 [34]
for period 2015–2100. The SSP585 corresponds to a high emissions scenario consistent with the
Representative Concentration Pathway RCP 8.5 used in CMIP5.
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2.3. Annual Vegetation Primary Production Resilience Indicator (RV): Definition and Data

The annual vegetation primary production resilience indicator (RV) is analog to the RC indicator
(Equation (1)) but it is computed using annual NDVI data, which we use as proxy of gross primary
production. NDVI time series spanning the period July 1981 to December 2015 were obtained from the
Global Inventory Modeling and Mapping Studies(GIMMS) NDVI3g v1 dataset [35]. The long-term
GIMMS dataset is derived from measurements made by different Advanced Very High Resolution
Radiometer (AVHRR) sensors on board of the National Oceanic and Atmospheric Administration
(NOAA) polar-orbiting satellite series [35]. The satellite observations are corrected for various effects,
including sensor degradation, orbital drift, atmospheric effects, and volcanic eruptions. The time series
have a temporal resolution of about 15 days (i.e., two observations per month, one referring to day 1–15
and one to day 16-end of the month) and a spatial resolution of 1/12 degree. The 15-day composites
were obtained using the maximum value composition (MVC) technique [36], which minimizes the
scattering and absorption effects of the atmosphere.

We temporally smoothed the time series to reduce remaining noise. We applied an iterative
Savitzky–Golay filter [37] to fit the upper envelope of the NDVI time profiles as described by
Chen et al. [38]. Finally, the annual mean NDVI values were calculated for the period 1982–2015.

We aggregate the NDVI data at 0.5-degree resolution to allow analyzing the relationship between
RV and RP. Water bodies are not considered in the aggregated values, which are achieved through a
conservative mapping procedure [39]. We discuss the relationships between RV and RP for each world
biomes grouping the results by homogeneous climatic areas according to the Köppen–Geiger (KG)
classification [40]. The KG classification codes are listed in Table 1.

Table 1. Köppen–Geiger (KG) climate classification codes.

Main Climates Precipitation 1 Temperature 1

A: equatorial W: desert h: hot arid E: polar frost
B: arid S: steppe k: cold arid T: polar tundra
C: warm temperate f: fully humid a: hot summer
D: snow s: summer dry b: warm summer
E: polar w: winter dry c: cool summer

m: monsoonal d: extremely continental
1 Climate classes are defined for the reference climate 1951–2000.

2.4. Properties of RP and RV

The RP and RV indicators inherit all properties of RC (Section 2.1). In addition, the RP and RV
indicators computed at the grid cell level have an important property, i.e., they neither depend on the
period of the year nor on the portion of area with no precipitation or vegetation within the analyzed
cell (P = 0, NDVI close to 0).

Assuming linear mixing, this claim can be proven by computing the mean and the variance of a
time series of values xi, i = 1,.., N and of derived values defined as yi = a × xi, where a is the fraction
of area or the fraction of period where precipitation or NDVI are not null. It follows that µy = a × µx

and σy = a × σx, so the resilience indicator computed on these two time series does not change (q.e.d.).
Please note that if a trend exists in the period of the year or portion of area with no precipitation or
vegetation, this should be removed as mentioned in point 4 of Section 2.1.

Because of the 3rd property of the resilience indicator (Section 2.1), when aggregating the resilience
indicator computed at the grid cell level over an area of interest, the resulting resilience will be larger if
groups of temporally uncorrelated (i.e., diverse) cells exist in the area.

3. Results

The three main findings of this study are here shown and discussed:
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1. The test of the annual resilience indicator applied to precipitation to be inversely proportional to
drought frequency (Section 3.1–2nd property).

2. The relationship between RP and RV (Section 3.2).
3. The effects of climate change on RP (Section 3.3).

3.1. Annual Green Water Resources Resilience Indicator (RP) and Drought Frequency Since 1901

Figure 1 shows the mean (Figure 1a), the standard deviation (Figure 1b) of observed annual
precipitation data since 1901, as well as their combination defining RP (Figure 1c). RP tends to be
larger in regions with high precipitation values. However, the spatial variability is larger than the
one of the precipitation magnitude due to complex patterns of precipitation inter-annual variability.
Inter-annual variability is probably underestimated in regions with scarce data such as central Greenland,
Western Arabian Peninsula, and Central Amazon Forest, hindering the accurate computation of the
annual green water resource resilience indicator.

Remote Sens. 2019, 11, x FOR PEER REVIEW 5 of 13 

 

3. The effects of climate change on RP (Section 3.3). 

3.1. Annual Green Water Resources Resilience Indicator (RP) and Drought Frequency Since 1901. 

 

Figure 1. Analysis of annual mean precipitation observed data for the period 1901–2015: (a) long-term 
climatology; (b) standard deviation; (c) annual green water resources resilience indicator (RP); (d) 
drought hazard computed independently  with the Weighted Anomaly of Standardized 
Precipitation Index (WASP; [28,29]). 

Figure 1 shows the mean (Figure 1a), the standard deviation (Figure 1b) of observed annual 
precipitation data since 1901, as well as their combination defining RP (Figure 1c). RP tends to be larger 
in regions with high precipitation values. However, the spatial variability is larger than the one of 
the precipitation magnitude due to complex patterns of precipitation inter-annual variability. Inter-
annual variability is probably underestimated in regions with scarce data such as central Greenland, 
Western Arabian Peninsula, and Central Amazon Forest, hindering the accurate computation of the 
annual green water resource resilience indicator. 

Figure 1d shows the drought hazard computed as the probability of exceeding the median of 
global severe precipitation deficits for the reference period using the WASP [32]). The data displayed 
in Figure 1d is exactly the same as in Figure 3 of [33] and shows the frequency of abnormal 
precipitation deficits defining drought prone regions. Comparison between Figure 1c and Figure 1d 
strongly suggests an inverse relationship between RP and drought frequency. 

Figure 2 shows the relationship between RP and drought return periods. Their joint distribution 
is consistent, despite the large scatter of the data, with a global tendency toward the increase of 
drought return periods with increasing values of the precipitation resilience indicator. This 
consistency was tested using the proportionality coefficient that we found to be statistically 
significant with a p-value < 0.001. 

Commented [ml2]: 参考文献里的 

Figure 1. Analysis of annual mean precipitation observed data for the period 1901–2015: (a) long-term
climatology; (b) standard deviation; (c) annual green water resources resilience indicator (RP);
(d) drought hazard computed independently with the Weighted Anomaly of Standardized Precipitation
Index (WASP; [28,29]).

Figure 1d shows the drought hazard computed as the probability of exceeding the median of
global severe precipitation deficits for the reference period using the WASP [32]). The data displayed in
Figure 1d is exactly the same as in Figure 3 of [33] and shows the frequency of abnormal precipitation
deficits defining drought prone regions. Comparison between Figure 1c,d strongly suggests an inverse
relationship between RP and drought frequency.

Figure 2 shows the relationship between RP and drought return periods. Their joint distribution
is consistent, despite the large scatter of the data, with a global tendency toward the increase of
drought return periods with increasing values of the precipitation resilience indicator. This consistency
was tested using the proportionality coefficient that we found to be statistically significant with a
p-value < 0.001.
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3.2. Precipitation and Vegetation Resilience Indicator Since 1982

Figure 3 shows the mean (Figure 3a), the standard deviation (Figure 3b) of annual mean NDVI data
since 1982, as well as their combination defining RV (Figure 3c). RV is larger in tropical regions, where the
NDVI is large and the inter-annual variability is relatively low. RV sharply decreases in subtropical
regions, characterized by large inter-annual NDVI variability. RV also decreases towards the high
latitudes, where vegetation is generally less vigorous and subject to the largest inter-annual variability.
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Figure 3. Analysis of annual mean NDVI remotely sensed data for the period 1982–2015: (a) long-term
climatology; (b) standard deviation; (c) annual vegetation primary production resilience indicator (RV);
(d) spatial distribution of world biomes according to the Köppen–Geiger (KG) classification.



Remote Sens. 2019, 11, 2708 7 of 13

Table 2 shows the overall statistics organized per Köppen–Geiger (KG) classification. In general,
RV tends to be larger than RP. We note a relatively large spread of the precipitation data,
i.e., large standard deviation with respect to the mean precipitation averaged in each KG climate
zone. The spread of the drought frequency estimate by the WASP and the vegetation data measured
by the NDVI is smaller. The latter result is somehow expected because the KG climate classification
was developed exactly to characterize homogeneous land ecosystems. The spread of the green water
resources and vegetation primary production resilience indicators over homogeneous climate zones is
also relatively large, probably reflecting the dependency of the resilience indicator accuracy computed
on time series of limited length [23,27].

Table 2. Precipitation, drought and NDVI statistics averaged per climate class (1982–2015).

KG n.grid 1 P (mm) RP WASP 2 NDVI RV

Af 2531 2629 ± 748 103 ± 86 0.35 ± 0.09 0.83 ± 0.06 1100 ± 628
Am 1632 2162 ± 545 102 ± 86 0.32 ± 0.08 0.77 ± 0.11 955 ± 562
As 302 1042 ± 483 34 ± 32 0.46 ± 0.12 0.55 ± 0.15 353 ± 337
Aw 5762 1335 ± 418 86 ± 84 0.37 ± 0.10 0.63 ± 0.12 705 ± 544
BSh 2822 519 ± 208 28 ± 26 0.58 ± 0.15 0.35 ± 0.12 224 ± 164
BSk 3208 291 ± 133 25 ± 11 0.61 ± 0.13 0.23 ± 0.10 147 ± 161

BWh 2465 227 ± 95 22 ± 41 0.71 ± 0.16 0.19 ± 0.06 174 ± 160
BWk 1272 159 ± 86 21 ± 11 0.71 ± 0.12 0.13 ± 0.06 107 ± 87
Cfa 3084 1179 ± 419 44 ± 17 0.49 ± 0.10 0.59 ± 0.12 470 ± 458
Cfb 2302 985 ± 521 59 ± 29 0.47 ± 0.11 0.60 ± 0.13 464 ± 651
Cfc 166 1418 ± 857 76 ± 41 0.44 ± 0.14 0.59 ± 0.14 297 ± 389
Csa 1008 552 ± 224 25 ± 10 0.55 ± 0.14 0.38 ± 0.14 302 ± 327
Csb 602 777 ± 456 28 ± 13 0.48 ± 0.12 0.50 ± 0.19 510 ± 514
Csc 9 693 ± 214 44 ± 23 0.58 ± 0.15 0.45 ± 0.18 275 ± 147
Cwa 1509 1146 ± 536 57 ± 45 0.37 ± 0.10 0.58 ± 0.13 543 ± 457
Cwb 558 1104 ± 525 62 ± 33 0.33 ± 0.10 0.56 ± 0.17 624 ± 403
Cwc 10 568 ± 389 41 ± 29 0.47 ± 0.15 0.31 ± 0.29 472 ± 200
Dfa 768 589 ± 300 39 ± 11 0.55 ± 0.11 0.38 ± 0.11 80 ± 42
Dfb 4508 649 ± 290 63 ± 29 0.46 ± 0.09 0.46 ± 0.12 96 ± 61
Dfc 8591 574 ± 270 82 ± 55 0.43 ± 0.09 0.41 ± 0.10 94 ± 86
Dfd 877 292 ± 55 49 ± 11 0.42 ± 0.06 0.28 ± 0.07 30 ± 12
Dsa 79 393 ± 80 28 ± 4 0.57 ± 0.10 0.23 ± 0.06 71 ± 22
Dsb 207 502 ± 274 34 ± 16 0.53 ± 0.12 0.26 ± 0.14 93 ± 70
Dsc 188 494 ± 358 55 ± 27 0.50 ± 0.11 0.34 ± 0.12 115 ± 120
Dwa 315 598 ± 226 31 ± 6 0.37 ± 0.06 0.39 ± 0.08 90 ± 47
Dwb 649 565 ± 196 44 ± 21 0.37 ± 0.06 0.42 ± 0.11 105 ± 122
Dwc 1307 459 ± 172 50 ± 23 0.36 ± 0.11 0.39 ± 0.11 108 ± 127
Dwd 100 315 ± 43 56 ± 7 0.36 ± 0.04 0.27 ± 0.06 27 ± 9
ET 1662 583 ± 414 59 ± 45 0.52 ± 0.13 0.26 ± 0.14 116 ± 158

1 Number of cells used to compute the statistics on the 0.5 degrees gridded data. 2 WASP is computed since 1901.

However, the mean RV is often significantly different among KG classes. RP is higher in equatorial
(A class) and warm temperate climates (C class) than in arid climate (B class). Similarly, RV decreases
from equatorial (A class) to warm temperate (C class), arid (B class) and snow (D class) climates.
Within warm temperate biomes (C class), RP is greater in fully humid (f class) than in winter and
summer dry regions (w and s classes, respectively), while RV takes higher values in winter dry and
summer dry (with warm summer) climates (wb and sb classes, respectively) rather than in fully humid
climates (f class). In arid climates (B class), RP is greater in the steppe than in the desert regions
(S and W classes respectively), while lower values of RV are found in cold areas than in hot areas
(class k and h respectively). In snow climates (class D), regions with cool and warm summer (class c
and b) have higher RV than regions with hot summer or extremely continental weather (a and d
classes, respectively).
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The size of the markers represents the land area actually covered by the homogeneous climate
zones. The color scheme is the same as in Figure 4d.

Figure 4 shows the relationships between RP and RV averaged over the climate zones defined
according to the Köppen–Geiger classification (Table 2).
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Figure 4. Ratios of vegetation primary production and green water resource resilience indicators
(RP and RV, respectively) vs. RP averaged over the homogeneous KG climate zones displayed in
Figure 3d.

Despite the large scatter of the data that emerged from the analysis in Table 2, the comparison
between RP and RV for different climate zones displays clear relationships. In fact, the ratio between
the two is roughly constant over two wide ranges of biomes. On the one hand, the RV/RP ratio tends to
stay around the 10–15 band for ecosystems ini arid climate (i.e., the B class), warm temperate climate
(C class) and equatorial climate (A class). On the other hand, the RV/RP ratio tends to stay below 5
for snow and polar climates (i.e., the “D” and E classes, respectively) as well as the subpolar oceanic
climate (Cfc), representing an exception to the previous statement. Another exception is represented by
the warm-summer Mediterranean climate (Csb), characterized by the largest RV/RP ratio. This peculiar
climate is found in the north-western Iberian Peninsula and central Anatolia (see Figure 3d).

3.3. Effects of Climate Change on Annual Green Water Resources Resilience Indicator (RP)

Figure 5 shows the changes in mean annual precipitation (Figure 5a), standard deviation (Figure 5b)
and of RP (Figure 5c) computed from an ensemble of six climate models from CMIP6 between the
periods 1981–2014 and 2015–2100. The mean annual precipitation and the standard deviation are
increasing in many regions around the globe and mainly in the Northern Hemisphere, because of the
larger humidity levels that the warmer atmosphere can hold, because of alterations in the frequencies of
large-circulation patterns and because of the general increase of climate variability [41,42]. According to
these simulations, the relative ratio of the increases in the mean and in the standard deviation of annual
precipitation is such that the annual RP is decreasing over most regions (Figure 5c,d). Despite the
generalized increase in precipitation, the significant increase in inter-annual variability is reflected in a
reduction of RP over most regions around the globe. This means that even though there will be more
water available, this will be less reliable. The only exception is found in desert regions, where small
increases in mean precipitation are dominating the RP signal.
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4. Discussion

The functional quality of ecosystems is directly linked to the amount and reliability of services
they can provide [43,44]. With this paper, we enrich the set of analysis tools for assessing the quality
and the stability of ecosystems through the resilience indicators that we propose to apply to green
water resources and to vegetation primary production.

These indicators, formally derived from the ecological definition of resilience [27], require relatively
long time series (30 years and more) that, despite not available from the most frequently used satellite
mission (e.g., MODIS, SPOT-VGT and Prob-V), can be extracted from AVHRR-based long-term archive
as the one used in this study (i.e., GIMMS). This long-term approach may thus complement more
complex resilience measures based on the engineering definition of resilience i.e., the ecosystem
recovery time more suited for short time-scales analyses [45,46]. Comparing these two different views
would probably provide an interesting way forward to the understanding of ecosystems resilience and
stability assessments.

Our analysis linking annual precipitation and vegetation productivity suggests a coherent
relationship between the resilience indicators computed on precipitation and NDVI. The magnitude
of the resilience indicator for vegetation was found larger than the one of precipitation. This may
indicate the capability of vegetated ecosystems to maintain their functioning also in the presence of
precipitation variability. Nevertheless, the spatial patterns of the two resilience indicators do coincide
to a great extent. In regions with reduced agreement, as for instance in the high latitudes of the
Northern Hemisphere, the reduced vegetation resilience as compared to the precipitation resilience
may be due to temperature and/or radiation, not explicitly considered in this study. Further studies are
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needed to assess the robustness of these results including, for instance, the effects of temperature and
radiation as well.

This analysis could also be further evolved by accounting for the delay between precipitation input
and vegetation response, as well as different time-scales [45,47,48], including different seasonalities
such as double seasons and different periodicities as those found in the Southern Hemisphere and
disentangling the differences between natural and anthropic vegetation cover, possibly isolating the
effects of management and irrigation [49].

5. Conclusions

This paper provides an alternative framework for the assessment of ecosystem resilience by
proposing two indicators, one for green water resources and one for vegetation productivity, based on
the ecological definition of resilience [27].

Our global scale analysis strongly suggests a coherent relationship between these indicators over
two wide ranges of biomes in the present climate. However, further studies are needed to quantify the
robustness of these relationships in a changing climate, considering other definitions of resilience as
well [23,45]. Including temperature and radiation would be also needed to fully explain the observed
spatial patterns in vegetation resilience.

Quantifying the resilience of ecosystems and ecosystem services is of upmost relevance when
considering future climate change [50–53]. Indeed, the variation of temperature and precipitation
patterns caused by climate change is expected to affect the availability and seasonality of water resources
and the growing season of vegetation in various regions of the world [54], affecting biodiversity and
the provisioning of ecosystem services [24,46,55].

Our preliminary analysis of climate change projections from CMIP6 data displays alarming
results. The increase of precipitation magnitude projected for the next future is counterbalanced by the
concomitant increase of its variability, resulting in a general decrease of green water resource resilience
at the global level.

In the future, it would also be interesting to carry on this analysis with an indicator of Blue Water
Resources Resilience, which could be easily defined by computing the resilience indicator on the
surface water budget given by precipitation minus evapotranspiration. This could be put in relation
with soil moisture and river drought through the standardized Precipitation Evapotranspiration Index
(SPEI [56,57]) or the Standardized River Discharge Index (SRDI [58,59]) to measure the reliability of
freshwater resources for society and to help assessing the status of river ecosystems [60]. This additional
resilience indicator may be potentially suitable for river related ecosystem services.
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