
 

 

Report on the biogeochemical model of 
the North-Western European Shelf 

 

Friedland, R., Stips, A., Grizzetti, B., de Roo, A., 
Lessin, G.  

 

 

2020 

EUR 30168 EN 



 

This publication is a Technical report by the Joint Research Centre (JRC), the European Commission’s science and knowledge service. It 

aims to provide evidence-based scientific support to the European policymaking process. The scientific output expressed does not imply a 
policy position of the European Commission. Neither the European Commission nor any person acting on behalf of the Commission is 
responsible for the use that might be made of this publication. For information on the methodology and quality underlying the data used 

in this publication for which the source is neither Eurostat nor other Commission services, users should contact the referenced source. The 
designations employed and the presentation of material on the maps do not imply the expression of any opinion whatsoever on the part 
of the European Union concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation 

of its frontiers or boundaries. 
 
Contact information 

Name: René Friedland 
Address: Via E. Fermi, TP270, Ispra, Varese, Italy 
Email: jrc-mmf@ec.europa.eu, rene.friedland@ec.europa.eu 

Tel.: +39-0332-78947 
 
EU Science Hub 

https://ec.europa.eu/jrc 
 
 

JRC120213 
 
EUR 30168 EN 

 

PDF ISBN 978-92-76-17866-8 ISSN 1831-9424 doi:10.2760/78173 

    

 
 

Luxembourg: Publications Office of the European Union, 2020 
 
© European Union, 2020 

 
 
 

 
 
 

The reuse policy of the European Commission is implemented by the Commission Decision 2011/833/EU of 12 December 2011 on the 
reuse of Commission documents (OJ L 330, 14.12.2011, p. 39). Except as otherwise noted, the reuse of this document is authorised 
under the Creative Commons Attribution 4.0 International (CC BY 4.0) licence (https://creativecommons.org/licenses/by/4.0). This means 

that reuse is allowed provided appropriate credit is given and any changes are indicated. For any use or reproduction of photos or other 
material that is not owned by the EU, permission must be sought directly from the copyright holders. 
 

All content © European Union, 2020 
 
How to cite this report: Friedland, R., Stips, A., Grizzetti, B., de Roo, A. and Lessin, G., Report on the biogeochemical model of the North-

Western European Shelf, Publications Office of the European Union, Luxembourg, 2020, ISBN 978-92-76-17866-8, doi:10.2760/78173, 
JRC120213. 

mailto:jrc-mmf@ec.europa.eu
mailto:rene.friedland@ec.europa.eu
https://creativecommons.org/licenses/by/4.0/


i 

Contents 

1 Introduction..................................................................................................................................................................................................................................................... 2 

2 Material and method ............................................................................................................................................................................................................................. 5 

2.1 Model setup ...................................................................................................................................................................................................................................... 5 

2.2 Riverine nutrient and freshwater inputs ............................................................................................................................................................. 10 

2.3 Validation data sets for hydrographical properties ................................................................................................................................. 17 

2.4 Validation data sets for biogeochemical properties ............................................................................................................................... 20 

3 Results .............................................................................................................................................................................................................................................................. 28 

3.1 Sea surface height compared to gauge data................................................................................................................................................ 28 

3.2 Sea surface temperature (compared to satellite data) ....................................................................................................................... 29 

3.3 Sea surface salinity (compared to satellite data) ..................................................................................................................................... 30 

3.4 Salinity and temperature compared to climatologies (KNSC and GINS) ............................................................................. 31 

3.5 Mixing zones and current fields.................................................................................................................................................................................. 32 

3.6 State of MSFD eutrophication indicators ........................................................................................................................................................... 33 

3.7 Seasonal climatologies ....................................................................................................................................................................................................... 37 

3.8 Model results compared to satellite data ......................................................................................................................................................... 42 

3.9 ICES COMPEAT data ............................................................................................................................................................................................................... 47 

3.10 Assessment for AMM7 regions ................................................................................................................................................................................... 49 

3.11 Station data ................................................................................................................................................................................................................................... 53 

4 Summary ........................................................................................................................................................................................................................................................ 55 

References ............................................................................................................................................................................................................................................................. 56 

 

 

 

 

 

 



2 

1 Introduction 

Marine and coastal waters all around Europe and the globe are heavily threatened by eutrophication, the 

excessive accumulation of nutrients in the water resulting in potentially toxic algal blooms and regions with 

nearly no oxygen in the water, preventing any underwater life (Nixon, 1995). Hence, clean oceans and seas 

are addressed by the 2030 Agenda for Sustainable Development of the United Nations (1) as well as by 

Directive 2008/56/EC of the European Parliament and of the European Council (Marine Strategy Framework 

Directive (2008/56/EC)). 

The accumulation of (inorganic) nutrients in the Greater North Sea region has already been reported for 

decades, for example a first target to half the riverine nutrient loads was set in 1988 (PARCOM, 1988). Using 

the years 2006 to 2014, the third eutrophication status assessment (OSPAR, 2017) of the Convention for the 

Protection of the Marine Environment of the North-East Atlantic (OSPAR) led to the identification of non-

problematic, potential problematic and problematic areas (see Figure 1). All problematic and potential 

problematic areas are located along the southern and eastern parts of the North Sea and along the shoreline 

of France. 

Currently, strong efforts are being made to update the eutrophication assessment, especially within the 

OSPAR working group on Hazardous Substances and Eutrophication (HASEC (2)), leading to revised 

assessment units. A first, yet not finalised approach, is to implement and apply the ICES COMPEAT tool (3) 

(see Figure 2). The preliminary assessment to compare the present state with set targets, resulted in a 

worsened classification as more regions are now assessed as ‘Not Good’. These regions are again mostly 

located in the southern and eastern North Sea, but now also many (coastal) waters around UK and in the 

Celtic and Irish Sea are classified as ‘Not Good’ (see Figure 2). 

To support the integrated assessment and develop the ability to test future threads or suitable measures to 

improve the water quality, the Marine Modelling Framework (MMF) of JRC was extended by a fully coupled 

three-dimensional model of the Greater North Sea, Celtic Sea and Irish Sea. The developed model was 

supposed to incorporate the dominating hydrodynamical features as well as a sophisticated model of the 

lower trophic levels (LTL), suitable to allow scenario simulations and validated using up-to-date observations. 

While a wide branch of coupled 3d-models for the North Sea region already exists, e.g. shown in Moll and 

Radach (2003), the newly developed JRC model was chosen to base on GETM and ERSEM. GETM was selected 

as hydrodynamical engine of the model to be in a methodologial agreement with the other LTL models of 

MMF and because it was already shown that GETM is well suitable for the modelling of the Greater North Sea 

(e.g. Stips et al. (2016), Pätsch et al. (2017), Gräwe et al. (2015)). Further, it allows easy incorporation of up-

to-date LTL models like ERSEM, which was already successfully used for the simulation of the 

biogeochemistry of the Greater North Sea (Butenschön et al., 2016). Nevertheless, many other LTL models 

were also applied to the region, e.g. ERGOM (Maar et al., 2011), ECOSMO (Daewel and Schrum, 2013), 

ECOHAM (Große et al., 2016), ERSEM-BFM (van Leeuwen et al., 2015) or even combined to a model ensemble 

(Lenhart et al., 2010). 

 

                                           
(1) https://sustainabledevelopment.un.org/sdgs 

(2) https://www.ospar.org/work-areas/hasec 

(3) https://ocean.ices.dk/core/compeat?assessmentperiod=20062014_Test 

https://sustainabledevelopment.un.org/sdgs
https://www.ospar.org/work-areas/hasec
https://ocean.ices.dk/core/compeat?assessmentperiod=20062014_Test
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Figure 1: Result of the integrated eutrophication assessment (4) by (OSPAR, 2017) 

                                           
(4) https://odims.ospar.org/layers/geonode:ospar_eut_status_2017_06_001/metadata_detail 

https://odims.ospar.org/layers/geonode:ospar_eut_status_2017_06_001/metadata_detail
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Figure 2: Result of the eutrophication assessment, computed with ICES COMPEAT 
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2 Material and method 

2.1 Model setup 

Based on a collaboration with PML and NIOZ a 3d-model system of the North-Western European Shelf 

(NWES) was developed. It covers the region between 46.4° N-63° N and 17.5° W-13.1° E (see Figure 3) and 

includes the Greater North Sea and surrounding areas (Skagerrak and Kattegat in the east, Norwegian Sea in 

the North, English Channel and Celtic Sea in the South, Irish Sea and parts of deep Atlantic Ocean in the 

West). The model system is a fully coupled 3d-hydrodynamical-biogeochemical model of the lower trophic 

web. The hydrographical part is based on the General Estuarine Transport Model (GETM (5)). By using the 

Framework for Aquatic Biogeochemical Models (FABM; Bruggeman and Bolding (2014)), the European 

Regional Seas Ecosystem Model (ERSEM; Butenschön et al. (2016)) was coupled dynamically to the 

hydrodynamic model engine. The model simulations covered 8 years (2005-2012), restricted by the riverine 

inputs. 

The horizontal grid cells of the model region are equidistant with a resolution of 0.08° in x-direction and 0.05° 

in y-direction, resulting in a cell size of 4.04-6.13 km (x-direction) and 5.56 km (y). For the vertical 

decomposition, adaptive coordinates were chosen, which adjust the layer height depending on the vertical 

stratification. To avoid numerical instabilities, the minimal height of the surface and bottom cell was set to 

0.5 m. It has been shown that adaptive coordinates are advantageous for the simulation of stratified waters 

like the North or Baltic Sea (Gräwe et al., 2015). The bathymetry of the model domain (Figure 3a) was initially 

taken from North-West European Shelf Operational Oceanographic System (NOOS (6); Stips et al. (2016)), but 

was adjusted  to include some shallow parts of the Wadden Sea. A spatially variable bottom roughness 

(Figure 3b) was chosen, which was used as optimisation parameter to enhance the match of modelled and 

observed tides. 

 

(a) (b)  
Figure 3: Used topography (a; m) and bottom roughness (b; m) of the NWES-model 

 

The used version of ERSEM is freely available (7) (upon registration), a previous version of ERSEM was used 

already by JRC MMF (Garcia-Gorriz et al., 2016). It consists of dissolved inorganic nutrients (ammonium, 

nitrate, phosphate, carbon, silicate) and has a sophisticated growth model for phytoplankton, which is divided 

                                           
(5) http://www.getm.eu 

(6) http://www.noos.cc 

(7) https://gitlab.ecosystem-modelling.pml.ac.uk/stable/ERSEM 

http://www.getm.eu/
http://www.noos.cc/
https://gitlab.ecosystem-modelling.pml.ac.uk/stable/ERSEM
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into four functional groups (see Figure 4). Each group has its specific ecological niche and requirements. 

Nutrients are uptaken in a variable ratio (and not following the Redfield ratio like in most other 

biogeochemical models). This allows them to adapt their growth to changes of the nutrient limitations. While 

previous studies (Ford et al., 2017) have shown a good agreement of the different modelled groups with 

observations, the analyses within this report are focused on the integrated Chlorophyll-a content of all 

phytoplankton groups, as MSFD is using this as a central eutrophication indicator (D5.C2). ERSEM further 

incorporates three functional zooplankton groups and several benthic models of different complexities. For 

the present study, the benthic model with the lowest complexity (8), the so-called ‘benthic returns’, was used 

to reduce the computational efforts. 

 

 
Figure 4: Schematic overview of the European Regional Seas Ecosystem Model (ERSEM; taken from (9)) 

 

Atmospheric forcing fields (10) were taken from the European Centre for Medium Range Weather Forecast 

(ECMWF, using ERA5 (11)) in agreement with the other marine model of JRC (12). Sea level data and surface 

currents at the open boundaries were generated in temporal resolution of 30 minutes from the tide model 

provided by Oregon State University (13). They were enhanced by the daily deviation from the long-term mean 

using HYCOM (14) (Cummings and Smedstad, 2013). The 2d-boundaries are following the spatial gradients of 

                                           
(8) Following fabm-ersem-15.06-L4-noben-docdyn-iop.yaml 

(9) https://www.pml.ac.uk/Modelling_at_PML/Models/ERSEM 

(10) 10 m winds, 2 m temperature, 2 m dewpoint temperature, cloud cover, mean sea level pressure, 

precipitation 
(11) https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5 

(12) Taken from /ACQUA/COMMONDATA/ECMWF/ncdf_era5 

(13) http://volkov.oce.orst.edu/tides/AO.html 

(14) http://www.hycom.org 

https://www.pml.ac.uk/Modelling_at_PML/Models/ERSEM
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
http://volkov.oce.orst.edu/tides/AO.html
http://www.hycom.org/
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the sea surface height from the global model (see Figure 5), especially with a higher water level at the Baltic 

Sea boundary (due to the nature of the Baltic Sea, where freshwater inputs exceed evaporation, so that a net 

export of water into the North Sea must take place). Dominated by the Gulf Stream, along the western 

boundary of NWES the positive U-currents indicate an inflow into the region, while a major part is leaving 

again through the northern boundary, following the positive V-currents (see Figure 5). Using the salinity and 

water temperature fields from HYCOM, the climatological means were computed at the open boundaries. This 

approach allows to use the open boundaries for later scenario simulations without adjusting them further. On 

the other hand, the simulation results got slightly worse along the boundaries, as the short-term variability 

was not included. The fields along the southern boundary had to be adjusted, using the mean values from 

World Ocean Atlas 2018 (WOA2018 (15)). 

Using observational data covering the inorganic nutrients (phosphate, nitrate, ammonium and silicate), 

dissolved oxygen, dissolved inorganic carbon and alkalinity from WOA2018, climatological values (in a 

monthly resolution) were computed and processed to be used along the open boundaries. Furthermore, winter 

values from WOA2018 were processed to generate the necessary initial conditions (referring to early 

January). Thereafter, the values were fitted to the model bathymetry and vertically adjusted to be utilised as 

model input. Using these fields as first initial conditions, a full simulation of NWES covering a five-year period 

was conducted. At the end of this spin-up phase, stable annual biogeochemical cycles were recognisable. 

Afterwards, hydrographical and biogeochemical variables (Figures 6 and 7) were selected from the end of the 

spin-up phase and processed to provide initial conditions for the later simulations. 

 
Figure 5: Sea Surface Height (black), U- and V-components of the currents (orange and gray) along the open boundaries 

averaged over the complete simulation period. 

 

                                           
(15) https://www.nodc.noaa.gov/OC5/woa18 

https://www.nodc.noaa.gov/OC5/woa18/
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(a) (b)   

(c) (d)
Figure 6: Initial fields of water temperature (a, b) and salinity (c, d) of the NWES setup, shown are surface values (a, c) and 

vertical averages (b, d) of both 

 

(a) (b)

(c)  (d)  
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Figure 7: Initial fields of dissolved inorganic nitrogen (a), phosphate (b), dissolved inorganic carbon (c) and silicate (d) of 
the NWES setup, only surface values are shown 
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2.2 Riverine nutrient and freshwater inputs 

Riverine nutrient and freshwater inputs were provided by JRC’s catchment models GREEN (Grizzetti et al., 

2012, Grizzetti et al., 2019) and LISFLOOD (De Roo et al., 2000, Van Der Knijff et al., 2010). GREEN is a 

statistical GIS-based model covering the whole of Europe, including the nutrient loads entering the North-

Western European Shelf (Figures 8-10). The nutrient and freshwater loads were provided at the land-sea-

interface, following the classification of outflow points from GREEN, which incorporated the freshwater flux 

provided by the LISFLOOD model. LISFLOOD is a grid-based rainfall-runoff-water resources model, which 

simulates the daily water balance of Europe using 5 km grid cells. It takes water abstractions and return 

flows for irrigation, livestock, industry, energy cooling, public water usage, and ecosystem constraints into 

account. The output of both catchment models is provided with a spatially very high resolution, resulting in 

roughly 15 000 inflow points for the NWES setup. These were merged into the nearest grid cell of the 

hydrodynamic model. As only annual values of freshwater runoff and nutrient loads could be provided, a 

temporal downscaling was conducted, using climatological cycles computed from the publicly available 

catchment model HYPE (16). As the biogeochemical model needs the inorganic nutrient loads (Ammonium, 

Nitrate, and Phosphate), Total Nitrogen and Phosphorus provided by GREEN were used to estimate the 

inorganic loads (17). Constant conversion factors were assumed, computed from the ICG EMO nutrient load 

database. 

To validate the freshwater runoff and riverine nutrient loads, a variety of observed data for the biggest rivers 

was merged, provided by: 

● Global Runoff Data Centre (18); 

● Global Nutrient Export from WaterSheds 2 (Mayorga et al., 2010); 

● European Environment Agency (19); 

● Publicly available databases (OSPAR Data and Information Management System (20); UK 
National River Flow Archive (21); Hydro-Data provided by the Irish Office of Public Works (22); 

● OSPAR Intersessional Correspondence Group on Eutrophication Modelling (ICG EMO (23)); 

● Literature sources (see Table 1). 

The riverine freshwater runoffs and nutrient loads provided by LISFLOOD and GREEN fit very well with the 

observations (see Figures 11-13). Correlations between reported and modelled riverine nutrient loads are 

overall high and the linear regression is close to 1. 

 

Table 1: Used literature sources for the validation of the riverine loads 

Reference River 

                                           
(16) https://hypeweb.smhi.se/explore-water/historical-data/europe-time-series 

(17) Ammonium and Nitrate are 5 % and 75 % of Total Nitrogen, while Phosphate is 50 % of Total Phosphorus. 

(18) https://www.bafg.de/GRDC/EN/01_GRDC/grdc_node.html 

(19) https://www.eea.europa.eu/data-and-maps/data/waterbase-rivers-10 

(20) https://odims.ospar.org 

(21) https://nrfa.ceh.ac.uk/data/search 

(22) http://waterlevel.ie/hydro-data/list.html# 

(23) Provided by Sonja v Leeuwen (NIOZ, pers. comm.), see Lenhart et al. (2010); when forcing the NWES 

simulation with ICG EMO the freshwater inputs were scaled by a factor of 0.9 to improve the salinity 
gradients. 

https://hypeweb.smhi.se/explore-water/historical-data/europe-time-series/
https://www.bafg.de/GRDC/EN/01_GRDC/grdc_node.html
https://www.eea.europa.eu/data-and-maps/data/waterbase-rivers-10
https://odims.ospar.org/
https://nrfa.ceh.ac.uk/data/search
http://waterlevel.ie/hydro-data/list.html%23
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Hartmann et al. (2011) Rhine 

Hesse and Krysanova (2016) Elbe 

Howden et al. (2010) Thames 

Ménesguen et al. (2019) Loire, Seine 

Minaudo et al. (2015) Loire 

Mockler et al. (2017)  Shannon 

Passy et al. (2013), Thieu et al. (2010) Scheldt, Seine, Somme 

Passy et al. (2016) Seine 

Tockner et al. (2009) Elbe, Loire, Rhine 

Radach and Pätsch (2007)  Elbe, Ems, Rhine, Weser 

Romero et al. (2013) Loire, Scheldt, Seine, Somme, Vilaine 
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(a) (b)  

(c)  
Figure 8: Freshwater runoff [m3 s-1] into the European seas (a), zoomed into the NWES region (b) and summed per 

country (c, highlighted are the biggest rivers)  
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(a) (b)  

(c)  
Figure 9: Riverine Total Nitrogen Load [kt a-1] into the European seas (a), zoomed into the NWES region (b) and summed 

per country (c, highlighted are the biggest rivers) 
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(a) (b)  

(c)  
Figure 10: Riverine Total Phosphorus Load [kt a-1] into the European seas (a), zoomed into the NWES region (b) and 

summed per country (c), highlighted are the biggest rivers) 
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Figure 11: Comparison of reported freshwater runoff [m3 s-1] with LISFLOOD/GREEN model 

 
Figure 12: Comparison of reported Total Nitrogen load [t a-1] with GREEN model  
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Figure 13: Comparison of reported Total Phosphorus load [t a-1] with GREEN model 
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2.3 Validation data sets for hydrographical properties 

For the calibration and validation of the NWES model, a wide range of observational data sets was used. First, 

sea gauge data for stations along all coasts (see Figure 14) was taken from EMODnet (24) and further 

processed. Two sets of Sea Surface Temperature (SST) fields derived from satellite data were taken from 

COPERNICUS. The gap-free ‘High Resolution L4 Sea Surface Temperature’, reprocessed by IFREMER (25) was 

used with a very high temporal (daily) and spatial resolution (0.04°, see Figure 15a), as well as the ESA CCI 

SST (26) data set based on OSTIA, which has a slightly coarser spatial resolution (0.05°, see Figure 15b). ESA 

CCI (27) (Boutin et al., 2019) is further providing satellite data for the sea surface salinity (see Figure 16). The 

KLIWAS North Sea Climatology (KNSC (28); (Bersch et al., 2013)) was further incorporated. The data set 

contains the monthly means of water temperature and salinity on a 0.5 × 0.25° grid (79 vertical layers; see 

Figure 17), but the number of usable observations varies strongly. As the NWES-model has a finer horizontal 

and temporal resolution, the monthly mean for all cells with a KNSC grid box was computed. Further, the 

observations collected at the World Ocean Database (WOD (29)) were processed on a daily basis for the grid 

cells of the NWES-model (Figure 18) for a straightforward comparison with the model results. Further, at 

WOD a climatology covering the years 2005-2012 for the Greenland, Iceland and Norwegian Seas (GINS (30)) 

is provided on a quite fine horizontal grid of 0.1°. 

Following van Leeuwen et al. (2015), the North Sea can be divided into five regions according to their vertical 

density gradients (permanently stratified or mixed, seasonally stratified, intermittently stratified or dominated 

by freshwater influence). This classification was compared with a model-based estimation of the frequency of 

stratification (Figure 32). 

 

(a) (b)
Figure 14: Used gauge stations taken from EMODnet (left) and computed tidal range [m] (right) 

 

                                           
(24) http://www.emodnet-physics.eu/Portal 

(25)http://resources.marine.copernicus.eu/?option=com_csw&view=details&product_id=SST_NWS_SST_L4_REP

_OBSERVATIONS_010_023 
(26) http://marine.copernicus.eu/services-portfolio/access-to-

products/?option=com_csw&view=details&product_id=SST_GLO_SST_L4_REP_OBSERVATIONS_010_024 
(27) http://cci.esa.int/salinity 

(28) https://icdc.cen.uni-hamburg.de/1/daten/ocean/knsc-hydrographic.html 

(29) https://www.nodc.noaa.gov/OC5/WOD/pr_wod.html 

(30) https://www.nodc.noaa.gov/OC5/regional_climate/gin-seas-climate 

http://www.emodnet-physics.eu/Portal
http://resources.marine.copernicus.eu/?option=com_csw&view=details&product_id=SST_NWS_SST_L4_REP_OBSERVATIONS_010_023
http://resources.marine.copernicus.eu/?option=com_csw&view=details&product_id=SST_NWS_SST_L4_REP_OBSERVATIONS_010_023
http://marine.copernicus.eu/services-portfolio/access-to-products/?option=com_csw&view=details&product_id=SST_GLO_SST_L4_REP_OBSERVATIONS_010_024
http://marine.copernicus.eu/services-portfolio/access-to-products/?option=com_csw&view=details&product_id=SST_GLO_SST_L4_REP_OBSERVATIONS_010_024
http://cci.esa.int/salinity
https://icdc.cen.uni-hamburg.de/1/daten/ocean/knsc-hydrographic.html
https://www.nodc.noaa.gov/OC5/WOD/pr_wod.html
https://www.nodc.noaa.gov/OC5/regional_climate/gin-seas-climate/
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(a) (b)
Figure 15: Average SST derived from satellite data processed by IFREMER (a) and ESA SST CCI project using OSTIA (b) 

 

(a) (b)  
Figure 16: Average SSS (a) and standard deviation (b) derived from satellite data provided by ESA SST CCI 

 

(a) (b)
Figure 17: Average Sea Surface Salinity (a) computed from KNSC and number of observations per grid box (b) 
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(a) (b)  

(c) (d)
Figure 18: Water temperature (a) and salinity (b) taken from WOD averaged over all depth layers together with number of 

observations per grid point for water temperature (c) and salinity (d) 
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2.4 Validation data sets for biogeochemical properties 

For the calibration and validation of the biogeochemical part of the NWES model, a wide range of 

observational data sets was used. Only variables related to indicators of MSFD descriptor 5 (eutrophication) 

were selected. The used data sets span from single station data, like the WCO long-term monitoring station 

L4 (31) and Helgoland Roads (Wiltshire et al., 2008) taken from PANGAEA (32), over publicly available 

databases, providing raw observations (like ICES database (33) or WOD (34), which both vary substantially in 

the distribution of included data, see Figure 20). As the observation provided by the two databases is very 

scattered, they were merged for 13 regions (AMM7, see Figure 19), as suggested by Edwards et al. (2012) 

and Wakelin et al. (2012). 

Further, the North Sea Biogeochemical Climatology (NSBC (35); Hinrichs et al. (2017); see Figure 21) was 

used, which provides monthly averages for every year (level 2 data), as well as an optimally interpolated 

monthly climatology (level 3 data). Emodnet Chemistry (36) provides another seasonal climatology (but only 

for the North Sea area, see Figure 22). Two satellite data sets were used to validate the Chlorophyll-a 

concentrations (see Figure 23). Therefore, monthly averaged data provided at Environmental Marine 

Information System (EMIS (37)) and daily data from the Copernicus Marine environment monitoring 

service (38) was used. Due to the different temporal resolution of the two satellite data sets, they vary 

strongly in the data availability for the model validation (see Figures 23e, f). The comparison with satellite 

data was extended by including the light attenuation (kd490 taken from EMIS (39), see Figure 25), as well as 

two estimations of the net primary productivity (see Figure 24) taken from COPERNICUS (40) and Ocean 

Productivity (41) (VGPM, CBPM, EPPLEY). Both data sets have a decreasing data availability towards North. 

Finally, the observations gathered within ICES COMPEAT tool (Figures 2, 26) were used, which are currently 

applied to assess the ecological state of the OSPAR regions. 

Following the methods of Edman and Omstedt (2013), the model quality was classified into three groups 

(excellent, good and improvable). Therefore, the correlation coefficient (R) between observed and modelled 

concentrations was computed, as well as the root mean square deviation (RMSD), which was divided by the 

standard deviation from the observation to calculate the value of the cost function (see Figure 34). 

 

                                           
(31) https://westernchannelobservatory.org.uk/l4_nutrients.php 

(32) https://www.pangaea.de 

(33) https://ocean.ices.dk/HydChem/HydChem.aspx?plot=yes 

(34) https://www.nodc.noaa.gov/OC5/SELECT/dbsearch/dbsearch.html 

(35) https://icdc.cen.uni-hamburg.de/1/daten/ocean/knsc-hydrographic0/; 

(36) http://ec.oceanbrowser.net/emodnet-combined/#0 

(37) http://emis.jrc.ec.europa.eu/satellite/2km/EMIS_A_CHLA.xml 

(38) http://marine.copernicus.eu/services-portfolio/access-to-products 

(39) https://data.jrc.ec.europa.eu/dataset/f43226c2-c346-4e3c-9828-86428a16335f 

(40) http://marine.copernicus.eu/services-portfolio/access-to-

products/?option=com_csw&view=details&product_id=OCEANCOLOUR_GLO_CHL_L4_REP_OBSERVATIONS_009_082 
(41) http://sites.science.oregonstate.edu/ocean.productivity/index.php 

https://westernchannelobservatory.org.uk/l4_nutrients.php
https://www.pangaea.de/
https://ocean.ices.dk/HydChem/HydChem.aspx?plot=yes
https://www.nodc.noaa.gov/OC5/SELECT/dbsearch/dbsearch.html
https://icdc.cen.uni-hamburg.de/1/daten/ocean/knsc-hydrographic0/;
http://ec.oceanbrowser.net/emodnet-combined/%230
http://emis.jrc.ec.europa.eu/satellite/2km/EMIS_A_CHLA.xml
http://marine.copernicus.eu/services-portfolio/access-to-products/
https://data.jrc.ec.europa.eu/dataset/f43226c2-c346-4e3c-9828-86428a16335f
http://marine.copernicus.eu/services-portfolio/access-to-products/?option=com_csw&view=details&product_id=OCEANCOLOUR_GLO_CHL_L4_REP_OBSERVATIONS_009_082
http://marine.copernicus.eu/services-portfolio/access-to-products/?option=com_csw&view=details&product_id=OCEANCOLOUR_GLO_CHL_L4_REP_OBSERVATIONS_009_082
http://sites.science.oregonstate.edu/ocean.productivity/index.php
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Figure 19: Subdivisions of the NWES region used for the model validation 
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(a) (b)  

(c) (d)  

(e) (f)
Figure 20: Number of observations for different biogeochemical variables (Chlorophyll-a, Nitrate and Phosphate) from 

ICES data base (a, c, e) and World Ocean Database (b, d, f) 
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(a) (b)   

(c) (d)   

(e) (f)  
Figure 21: Near-surface concentrations of Chlorophyll-a (a, b), Dissolved Inorganic Nitrogen (c, d) and Phosphate (e, f) 

taken from NSBC level 2 data (a, c, e) from 2005 to 2012 and from NSBC level 3 climatology (b, d, f) 
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(a) (b)  

(c) (d)  
Figure 22: Mean observed Chlorophyll-a concentration (a) and Phosphate (c) taken from Emodnet Chemistry together with 

the frequency of available observations (b, d) at Emodnet 
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(a) (b)  

(c) (d)  

(e) (f)
Figure 23: Mean observed concentrations (a, b), standard deviation (c, d) and data availability between 2005 and 2012 (e, 

f) of Chlorophyll-a taken from two satellite data products (a, c, e from EMIS, b, d, f from COPERNICUS data service)  
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(a) (b)  

(c) (d)  

(e) (f)  
Figure 24: Mean vertically averaged Net Primary Production [mg C m-2 d-1] estimated by COPERNICUS (a) and Ocean 

Productivity models: (c) VGPM; (e) CBPM; (f) EPPLEY), together with the data availability (b, d) 
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(a) (b)  
Figure 25: Mean diffuse attenuation coefficient [m-1] at 490 nm taken from EMIS (a) and data availability (b) 

 

 
  
Figure 26: Spatial distribution of the data points within the single assessment units of ICES COMPEAT 
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3 Results 

3.1 Sea surface height compared to gauge data 

Compared with the gauge data from EMODnet (see Figure 14), a good agreement between observed and 

modelled sea surface height (Figure 26) was revealed for the stations, which are dominated by ebb and 

flood. Stations with a lower tidal range (e.g. along the Danish and Swedish coasts) showed lower correlations 

(Figure 27), indicating that the model system is well able to reproduce the dominating tides, while the small-

scale variations of the sea surface height can be improved in the model. This is also obvious for some 

stations, especially along the German and UK coast, which are suffering from the coarse horizontal model 

resolution worsening the model’s ability to reproduce complex systems, like Wadden Sea, Severn Estuary or 

Isle of Islay. 

 

 

(a) (b)
Figure 26: Correlation coefficients (a) and RMSE scaled by the tidal range (b) between modelled and observed sea surface 

height at the gauge stations taken from EMODnet 

 

 

 
Figure 27: Correlation coefficients (grey) and RMSE scaled by the tidal range (red) as function of the tidal range 
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3.2 Sea surface temperature (compared to satellite data) 

Comparing the modelled SST with satellite data (Figure 15), resulted in a mostly good agreement (indicated 

by high correlation coefficients: 0.953 for IFREMER and 0.963 for OSTIA), although some regional differences 

between the two data sets occurred (Figure 28). Lowest correlations occur around the Faroe Islands and 

along the western coast of Norway. For both data sets, the mean difference averaged over the NWES region 

is negative (IFREMER: – 0.75K, OSTIA: – 0.40K), indicating that the modelled SST is too high. This is especially 

the case in the North Sea, Celtic Sea and Irish Sea, while in the deep ocean model SST is slightly too low. 

 

(a) (b)  

(c) (d)  
Figure 28: Correlation coefficients (a, b) and mean differences (c, d; in K) between modelled and observed SST taken from 

IFREMER (a, c) and OSTIA (b, d) accompanied by the mean differences (negative differences denote regions, where the 
model SST is too high) 
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3.3 Sea surface salinity (compared to satellite data) 

Comparing the modelled SSS with satellite data (Figure 16), resulted in a mostly good agreement (see 

Figure 29), although some regional differences occur. Correlation is 0.65 and mean difference is 

approximately – 0.12, indicating that, averaged over the whole region, the modelled salinity is slightly too 

high. This overestimation occurs especially in the Northern North Sea and the Celtic Sea, while salinity is too 

low along the east coast of UK and in the eastern part of the North Sea. 

 

(a) (b)  

Figure 29: Correlation coefficients (a) and mean differences (b) between modelled and observed SSS taken 

from ESA SSS CCI (negative differences denote regions, where the model SSS is too high) 
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3.4 Salinity and temperature compared to climatologies (KNSC and GINS) 

As already seen from the SSS comparison (Figure 29), the salinity, especially along the southern and eastern 

shore of the North Sea, is mostly too low in the model. This is mainly caused by the missing estuaries of 

Rhine, Elbe or Humber (due to the coarse model resolution), where a substantial mixing of fresh and marine 

waters takes place. Nevertheless, the overall correlation is still quite high (0.87 if all depths are used, 0.92 for 

only the surface values), while the mean differences of the vertically averaged salinity (0.15) as well as of the 

surface salinity (0.46) are positive (see Figure 31). Dominated by the strong annual cycle (Figure 30), the 

water temperature has an even better correlation (0.97 for KNSC and 0.96 for GINS). It has a small positive 

bias for both data sets (0.21 K for KNSC and 0.33 K for GINS), occurring mainly in the deep ocean but also in 

most parts of the North Sea, while modelled water temperature in the south-western North Sea, as well as in 

the Celtic and Irish Seas is slightly too high (Figure 30). Compared to spatially quite coherent results gained 

from the satellite data (Figure 28), the comparison with water temperature fields of KNSC is more uneven, as 

the monthly means are strongly influenced by the available observations for every month, which vary 

between the grid cells. 

(a) (b)   

(c) (d)  
Figure 30: Average sea surface temperature from KNSC data set (black) and NWES model (red) averaged over the region 
covered by KNSC (a) and GINS (b); and mean differences between observed SST from KNSC (c) and GINS (d) compared to 

NWES model (negative differences denote regions, where the model SST is too high) 
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(a) (( b)   
Figure 31: Mean differences between modelled and observed salinity, using data from all depths (a) and only for the 

surface (b); negative differences denote regions, where the model temperature or salinity are too high) 

3.5 Mixing zones and current fields 

Comparing the stratification regions as identified by van Leeuwen et al. (2015) with the model results 

(Figure 32) reveals a good qualitative agreement, except for the seasonally stratified region in the northern 

part of the North Sea. On the other hand, the permanently mixed and intermittently stratified regions in the 

English Channel and Southern North Sea are matching well. The prevailing, anti-clockwise current system is 

well reproduced by the NWES model (Figure 33). There is a strong inflow from the English Channel into the 

North Sea, as well as through the central northern boundary, while the outflow mainly takes place along the 

Norwegian coast. In the southern North Sea, the water from the English Channel is mixing with water masses 

that have been transported along the eastern coast of UK. In the central part of the North Sea, the Dooley 

current is especially visible in the vertically averaged fields. On the other hand, there is a strong current along 

the continental shelf west and north of Ireland. 

 

(a) (b)
Figure 32: Classification of the North Sea to different stratification regions following van Leeuwen et al. (2015)  

((a) as published; (b) calculated from NWES model) 
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(a) (b)  

(c) (d)  
Figure 33: Scheme of the general circulation in the North Sea (a, taken from (OSPAR, 2000)) and mean currents from 

NWES model at different depth (b) surface, (c) vertically averaged, (d) near-bottom; colour-coded is current speed in m s-
1) 

3.6 State of MSFD eutrophication indicators 

In Figure 34 the NWES model quality is shown for the validation of all biogeochemical variables in 

comparison to all data sets presented afterwards. The results differ strongly for each variable and between 

the different observations. The best results are achieved for Phosphate and Chlorophyll-a, while Ammonium, 

Nitrate and Silicate are mostly improvable. 

The average over the whole simulation period (2005-2012) of the central eutrophication indicators 

Chlorophyll-a, Dissolved Inorganic Nitrogen (DIN, sum of Ammonium and Nitrate) and Phosphate are 

presented in Figures 35-37. All show strong spatial gradients, with highest values along the southern and 

eastern shore of the North Sea and along the UK coast. All three near-surface indicators follow strong annual 

cycles (Figure 38). While the nutrient concentrations reach their annual maximum values during winter 

season, Chlorophyll-a concentrations are highest during spring (North Sea) and summer (Celtic Sea). The 

vertical averaged concentrations show less developed annual cycles. 
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Figure 34: Classification of the validation results for the main biogeochemical variables (colour-coded) following Edman et 
al. (2013) using all data sets 

 

(a) (b)   

(c) (d)  
Figure 35: Average Chlorophyll-a concentration [mg m-3] from NWES model near the surface (a) and vertically averaged 

(c) together with the standard deviation (b, d) 
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(a) (b)  

(c) (d)  
Figure 36: Average DIN concentration [mmol m-3] from NWES model near the surface (a) and vertically averaged (c) 

together with the standard deviation (b, d) 

(a) (b)  

(c) (d)  
Figure 37: Average Phosphate concentration [mmol m-3] from NWES model near the surface (a) and vertically averaged 

(c) together with the standard deviation (b, d) 
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(a)  

(b)  

(c)   
Figure 38: Climatology of concentrations of Chlorophyll-a (a), Ammonium + Nitrate (b) and Phosphate (c) averaged for 

North Sea and Celtic Sea using only surface values and all depths 
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3.7 Seasonal climatologies 

Using the seasonal climatologies provided by Emodnet Chemistry to compare with the model results (see 

Figure 39), revealed a good agreement for Chlorophyll-a and Phosphate, while Ammonium and Silicate are 

improvable. Comparing to the model results with observations gathered by NSBC level 3 data, resulted in 

high correlation coefficients for all assessed variables (Figures 40, 41, 42), indicating that the seasonal cycles 

are well reproduced. The only exception is Chlorophyll-a in the central North Sea, where correlations are quite 

low. The assessment revealed only little differences of the model quality if all depths are evaluated or only 

near-surface values. Overall, the difference between observed and modelled Chlorophyll-a concentration is 

positive (Figures 40(b), (d)). This indicates that the model values are too low, especially in the Irish Sea and 

the southern North Sea (this is opposite to the comparison result from Emodnet Chemistry, see Figure 39(a)). 

While the phosphate concentration difference is mostly around 0 (Figure 41), DIN concentrations in the model 

have a strong bias with too high values at NWES model. This is especially the case in the southern and 

eastern North Sea, where DIN concentrations should be strongly reduced due to denitrification taking place in 

the sediments, which is missing in the present model setup. 
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(a) (b)  

(c) (d)  

Figure 39: Mean differences between observed concentrations (taken from Emodnet Chemistry) and modelled 

ones, evaluated for Chlorophyll-a (a), Ammonium (b), Phosphate (c) and Silicate (d) [negative differences 

denote regions, where the model concentrations are too high] 
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(a) (b)  

(c) (d)  

Figure 40: Correlation (a, c) and mean differences (b, d) between observed Chlorophyll concentration (taken 

from NSBC level 3) and modelled ones, evaluated for near-surface values (a, b) and for all depth layers (c, d) 

[negative differences denote regions, where the model concentrations are too high] 
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(a) (b)  

(c) (d)  

Figure 41: Correlation (a, c) and mean differences (b, d) between observed Phosphate concentration (taken 

from NSBC level 3) and modelled ones, evaluated for near-surface values (a, b) and for all depth layers (c, d) 

[negative differences denote regions, where the model concentrations are too high] 
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(a) (b)  

(c) (d)  

Figure 42: Correlation (a, c) and mean differences (b, d) between observed DIN (Nitrate + Ammonium) 

concentration (taken from NSBC level 3) and modelled ones, evaluated for near-surface values (a, b) and for 

all depth layers (c, d) [negative differences denote regions, where the model concentrations are too high] 
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3.8 Model results compared to satellite data 

Several satellite products covering the NWES regions were used for the model validation. The results differ 

substantially between the individual data sets. For Chlorophyll-a taken from EMIS RMSD between 

observations and model is quite high (1.14) and correlation only fair (R = 0.38). Especially in the southern 

and eastern North Sea, the Chlorophyll-a computed by the model is too high (see Figure 44). One problem is 

thereby the strong underestimation of the light attenuation (see Figure 45), due to the missing inorganic 

suspended matter (SPM, incorporated in the coupled 3d-model, e.g. by van der Molen et al. (2017)), which is 

dominating the availability of light strongly (Capuzzo et al., 2013). The statistics are even worse for the 

comparison with the COPERNICUS Chlorophyll-a data set (RMSD: 1.93; R = 0.29; see Figure 43). The vertically 

integrated Primary Productivity was compared with different data sets derived from satellite data (see 

Figures 46, 47). The model results are strongly underestimating, resulting in high RMSDs (COPERNICUS: 

1 169, VGPM: 1 340, CBPM: 622.8, EPPLEY: 680.3 mg C m-2 d-1) and low correlations (COPERNICUS: 0.17, 

VGPM: 0.17, CBPM: 0.12, EPPLEY: 0.14). Nevertheless, the extremely high values from the satellite products of 

up to 5 000 mg C m-2 d-1 seem unrealistically high (Weston et al. (2005) reported values between 456-

1 015 mg C m-2 d-1; Westberry et al. (2008) up to 1 500 mg C m-2 d-1; and Skogen and Moll (2000) 

reported also only values below 1 000 mg C m-2 d-1) and may cause the strong bias. 

 

(a) (b)

(c) (d)  
Figure 43: Mean concentrations [mg C m-3] of observed (a; taken from COPERNICUS data service) and modelled (b) near-

surface Chlorophyll-a, correlation (c) and mean difference (d; negative differences denote regions, where the model 
Chlorophyll-a is too high) between both data sets 
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(a) (b)

(c) (d)  
Figure 44: Mean concentrations [mg C m-3] of observed (a; taken from EMIS) and modelled (b) near-surface Chlorophyll-
a, correlation (c) and mean difference (d; negative differences denote regions, where the model Chlorophyll-a is too high) 

between both data sets  
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(a) (b)

(c) (d)  
Figure 45: Mean attenuation [m-1] as observed (a; taken from EMIS) and modelled (b), correlation (c) and mean difference 

(d; positive differences denote regions, where the model attenuation is too low) between both data sets 
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(a) (b)         

(c) (d)  

(e) (f)   
Figure 46: Mean vertically averaged Net Primary Production [mg C m-2 d-1] estimated using VGPM (a); the ratio between 
VGPM and model values (b), correlation (c) and mean difference between both data sets (d; positive differences denote 

regions, where the model attenuation is too low) 
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(a) (b)

(c) (d)  
Figure 47: Mean vertically averaged Net Primary Production [mg C m-2 d-1] taken from COPERNICUS (a) and modelled 
(b), correlation (c) and mean difference (d; positive differences denote regions, where the model attenuation is too low) 

between both data sets 
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3.9 ICES COMPEAT data 

Following the subdivision proposed by the OSPAR working group ICG EMO and implemented by ICES COMPEAT 

tool, the model quality regarding Chlorophyll-a (see Figure 48), Dissolved Inorganic Nitrogen (Figure 49) and 

Phosphate (Figure 50) was assessed (based on the climatologies computed for every assessment unit) using 

the same classification system as in Figure 34.  

The classification resulted, for Phosphate, in an excellent model quality, except for the eastern North Sea and 

linked to it the Norwegian Trench and Skagerrak area. Further, Chlorophyll-a is also excellent in most coastal 

areas, while it is mostly improvable in the open sea parts. Dissolved Inorganic Nitrogen is classified only for 

one region as excellent, due to the too high values in most of the regions. 

 

 
Figure 48: Classification of Chlorophyll-a model quality compared to COMPEAT  
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Figure 49: Classification of Dissolved Inorganic Nitrogen model quality compared to COMPEAT 

 

Figure 50: Classification of Dissolved Inorganic Phosphorus (Phosphate) model quality compared to COMPEAT 
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3.10 Assessment for AMM7 regions 

Using the AMM7 region (see Figure 19), model results and observations (using ICES data, WOD and NSBC 

level 3) were spatially averaged and compared. In Figures 52 and 53 the computed climatologies for some 

regions of the North Sea and Celtic Sea are shown in detail. While the model shows a strong annual cycle, the 

observed concentrations differ strongly between the single data sets. 

Further, the model quality was assessed for all regions for the near-surface values and using all depth layers 

(see Figure 51). Overall the classification results in the best results for the comparison with NSBC. For all 

data sets, the surface values showed higher correlations compared to all depths. The high correlations 

indicate that the dominating annual cycles are well reproduced. On the other hand, the cost function for 

Nitrate had mostly higher values, due to the overestimation of Nitrate at NWES model (especially Southern 

and Central North Sea, Skagerrak and Norwegian Trench). 

Using the light attenuation from the NWES model, Secchi Depth (often used as indirect eutrophication 

indicator) was computed. In Figure 54 it is compared to observations gathered from ICES and an estimate 

using the attenuation from EMIS. Due to the underestimation of the attenuation, Secchi Depth is mostly 

everywhere too high in the model, especially in the southern North Sea, but also in the Celtic or Irish Sea. Only 

during summer in the Central North Sea, does the model estimate meet the observation, as during the calm 

periods the suspended particles sink down, resulting in high Secchi Depth. 

 

(a) (b)

(c) (d)

(e) (f)
Figure 51: Classification of the model quality for Chlorophyll-a (a, b), Nitrate (c, d) and Phosphate (e, f) for the AMM7 

regions (see Figure 19), evaluated only for near-surface values (a, c, e) and all depths (b, d, f) 
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(a) (b) (c)   

(d) (e) (f)  

(g) (h) (i)  
Figure 52: Monthly climatologies of model values (black) and different observations (blue: WOD; grey: ICES data; red: NSBC) computed Chlorophyll-a (a-c), Nitrate (d-f) and Phosphate (g-i) 

for three AMM7 regions (see Figure 19) covering the North Sea 
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(a) (b) (c)  

(d) (e) (f)  

(g) (h) (i)  
Figure 53: Monthly climatologies of model values (black) and different observations (blue: WOD; grey: ICES data; red: NSBC) computed Chlorophyll-a (a-c), Nitrate (d-f) and Phosphate (g-i) 

for three AMM7 regions (see Figure 19) covering the North Sea 
 

 

 

 



52 

 

(a) (b)

(c) (d)  
Figure 54: Monthly climatologies of Secchi Depth [m] computed from the model values (black), observations provided by 

ICES (grey) and estimated from the attenuation (kd490) taken from EMIS (green; see Figure 45) 

 

  



53 

3.11 Station data 

Two stations (WCO long-term monitoring station L4 and Helgoland Reede) were selected for the validation 

(see Figure 55), representing the English Channel (L4) and the German Bight next to Helgoland, respectively. 

Both stations have distinctive annual cycles with high levels of Nitrate and Phosphate during winter and low 

levels during summer. This is reproduced well, although the strong overestimation of Nitrate in the south-

eastern North Sea appears again, as well as the too low salinities. An opposite annual cycle occurs for 

Chlorophyll-a with lowest in values (possibly below observed values) and high values during spring and 

summer. While the annual maxima at L4 are well reproduced by the NWES model, at Helgoland they are too 

high, which might be caused by the too strong riverine influence, seen in the low salinity values. 

 

(a) (b)

(c) (d)  

(e) (f)  

(g) (h)    
 

Figure 55: Comparison of model values and observation taken from several data sets regarding Chlorophyll-a (a, b), 
Nitrate (c, d), Phosphate (e, f) and salinity (g, h) evaluated for WCO long-term monitoring station L4 (a, c, e, g) and around 

Helgoland (b, d, f, h) 
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4 Summary 

A coupled three-dimensional simulation model of the North-Western European Shelf including the 

hydrodynamics and a lower trophic level (biogeochemical) model was newly developed. Its results are mostly 

reliable and allow to apply the model for scenario simulations. All major hydrodynamic features, especially 

the tides, are well reproduced, as well as the dominating current fields (see Figure 33) or areas where mixing 

or stratification is mostly occurring (see Figure 32). The salinity gradients from central estuaries (like Rhine, 

Elbe or Humber) towards the marine waters are overestimated in the model (see Figure 31), as low salinity 

region extends too far into the sea. This could be improved by using a finer horizontal grid, which could be 

able to follow the complex topography of the estuaries in a more sophisticated way, so that a stronger mixing 

of sea water and riverine freshwater could take place already in the estuary. 

Main biogeochemical variables used as eutrophication indicators (Chlorophyll-a, Phosphate, Nitrate and 

Ammonium) are included in the NWES model and mostly follow the annual cycles, which are also visible in the 

observations. On the other hand, the comparison of the model results with the large variety of available 

observations revealed strong differences between the individual data sets. This results in mixed signals, for 

example the simulated Chlorophyll-a concentration in the south-eastern North Sea is above the observations 

reported by Emodnet Chemistry (Figure 39), satellite data (Figure 43) or EMIS (Figure 44), but below the 

NSBC data (Figure 40), as well as below the data from WOD and ICES (Figure 52a). Overestimating the 

Chlorophyll-a concentration may be induced by too low light attenuation coefficients (Figure 45), as 

suspended inorganic particles (SPM) are missing, which lead especially in the southern and eastern North Sea 

to high attenuation coefficients. 

Another improvable feature is that Nitrate and Ammonium (combined as Dissolved Inorganic Nitrogen, DIN) 

are in the NWES model mostly above the observed concentrations (e.g. visible in Figure 55d). This is most 

likely caused by the lacking denitrification in the sediments, which is the central process to convert DIN to 

atmospheric Nitrogen. Solving this issue requires the implementation of a more sophisticated benthic model, 

coupled to ERSEM. Another uncertainty is introduced by the riverine nutrient loads. The monthly DIN loads 

were computed from the annual loads (assuming climatological means) and constant conversion factors from 

the total Nitrogen load. This method is quite simplified and might be extended by incorporating conversion 

factors and seasonality from the riverine loads, where observations are available. The very same proceeding 

worked quite well for the Phosphate loads, seen in a quite good agreement to the observed Phosphate 

concentrations of the NWES region. 

Other key elements of the biogeochemical model (like Dissolved Oxygen or Inorganic Carbon) were also 

assessed and validated, resulting in a good model quality (not shown). Silicate is included in some of the 

validation plots (e.g. Figure 39), revealing that model values especially in the southern and eastern North Sea 

are much too low. Due to its limitation, Diatoms are underestimated in the model simulation, what has only a 

limited influence on the overall Chlorophyll-a concentration, as the other Phytoplankton groups are not limited 

by Silicate and therefore their growth is enhanced. Nevertheless, improving the riverine Silicate loads seems 

important to achieve better model results, as rivers along the southern shore of the North Sea are the main 

source of Silicate to the NWES. 
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