51 research outputs found

    An open-access database and analysis tool for perovskite solar cells based on the FAIR data principles

    Get PDF
    Large datasets are now ubiquitous as technology enables higher-throughput experiments, but rarely can a research field truly benefit from the research data generated due to inconsistent formatting, undocumented storage or improper dissemination. Here we extract all the meaningful device data from peer-reviewed papers on metal-halide perovskite solar cells published so far and make them available in a database. We collect data from over 42,400 photovoltaic devices with up to 100 parameters per device. We then develop open-source and accessible procedures to analyse the data, providing examples of insights that can be gleaned from the analysis of a large dataset. The database, graphics and analysis tools are made available to the community and will continue to evolve as an open-source initiative. This approach of extensively capturing the progress of an entire field, including sorting, interactive exploration and graphical representation of the data, will be applicable to many fields in materials science, engineering and biosciences

    An open-access database and analysis tool for perovskite solar cells based on the FAIR data principles

    Get PDF
    Large datasets are now ubiquitous as technology enables higher-throughput experiments, but rarely can a research field truly benefit from the research data generated due to inconsistent formatting, undocumented storage or improper dissemination. Here we extract all the meaningful device data from peer-reviewed papers on metal-halide perovskite solar cells published so far and make them available in a database. We collect data from over 42, 400 photovoltaic devices with up to 100 parameters per device. We then develop open-source and accessible procedures to analyse the data, providing examples of insights that can be gleaned from the analysis of a large dataset. The database, graphics and analysis tools are made available to the community and will continue to evolve as an open-source initiative. This approach of extensively capturing the progress of an entire field, including sorting, interactive exploration and graphical representation of the data, will be applicable to many fields in materials science, engineering and biosciences. © 2021, The Author(s)

    An open-access database and analysis tool for perovskite solar cells based on the FAIR data principles

    Get PDF
    AbstractLarge datasets are now ubiquitous as technology enables higher-throughput experiments, but rarely can a research field truly benefit from the research data generated due to inconsistent formatting, undocumented storage or improper dissemination. Here we extract all the meaningful device data from peer-reviewed papers on metal-halide perovskite solar cells published so far and make them available in a database. We collect data from over 42,400 photovoltaic devices with up to 100 parameters per device. We then develop open-source and accessible procedures to analyse the data, providing examples of insights that can be gleaned from the analysis of a large dataset. The database, graphics and analysis tools are made available to the community and will continue to evolve as an open-source initiative. This approach of extensively capturing the progress of an entire field, including sorting, interactive exploration and graphical representation of the data, will be applicable to many fields in materials science, engineering and biosciences.</jats:p

    A dual isotope approach to identify denitrification in groundwater at a river-bank infiltration site

    No full text
    The identification of denitrification in the Torgau sand and gravel aquifer, Germany, was carried out by a dual isotope method of measuring both the d15N and d18O in NO3-. Samples were prepared by an anion exchange resin method (Silva et al., J. Hydrol. 228 (2000) 22) with a modification to the AgNO3-drying process from a freeze-drying to an oven-drying method. The occurrence of denitrification in the aquifer was confirmed by comparing the reduction of dissolved oxygen, dissolved organic carbon and NO3- concentrations with the dual isotope signatures. High nitrate concentrations were associated with low d15N and d18O values, and vice versa. The denitrification accords with a Rayleigh equation with calculated enrichment factors of =-13.62‰ for d15N and =-9.80‰ for d18O. The slope of the straight-line relationship between the d15N and d18O data demonstrated that the enrichment of the heavy nitrogen isotope was higher by a factor of 1.3 compared with the heavy oxygen isotope. It is concluded that the identification of this factor is a useful means for confirming denitrification in future groundwater studies

    Attenuation of groundwater pollution by bank filtration

    No full text
    Bank filtration, either natural or induced through the river bed by pumping from a system of connected lateral or vertical wells, provides a means of obtaining public water supplies. The success of such schemes is dependent on the microbial activity and chemical transformations that are commonly enhanced in the colmation layer within the river bed compared to those that take place in surface or ground waters. The actual biogeochemical interactions that sustain the quality of the pumped bank filtrate depend on numerous factors including aquifer mineralogy, shape of the aquifer, oxygen and nitrate concentrations in the surface water, types of organic matter in the surface and ground water environments, and land use in the local catchment area. This paper provides an introduction to a series of nine papers contained in this Special Issue that highlight these factors and finishes with a list of recommendations for co-ordinated research into attenuation of groundwater pollution by bank filtration

    Factors affecting denitrification during infiltration of river water into a sand and gravel aquifer in Saxony, Germany

    No full text
    River infiltration into a sand and gravel aquifer was investigated to assess the importance of denitrification in maintaining low-NOS groundwater supplies. Samples from the River Elbe and groundwater sampling points along a section of the aquifer were analysed for dissolved organic carbon, major ions and the 15N/14N isotopic ratio of dissolved NO3-. Input of NOS to the aquifer is influenced by seasonal, temperature-dependent denitrification in the river bed sediments. Along an upper flowpath in the aquifer from the River Elbe to a sampling point at a distance of 55 m, the median NO3- concentration decreased by 4.8 mg litre-1 and the δ15N composition increased by +9.0‰, consistent with denitrification. Similar isotopic enrichment was demonstrated in a laboratory column experiment with a reduction in NO3- of 10.5 mg litre-1 for an increase in δ15N of +9.8‰, yielding an isotopic enrichment factor of ~ 14.6‰. A mass balance for denitrification shows that oxidizable organic carbon required for denitrification is derived from both the infiltrating river water and solid organic matter fixed in the river bed sediments and aquifer material

    A water quality appraisal of some existing and potential riverbank filtration sites in India

    No full text
    There is a nationwide need among policy and decision makers and drinking water supply engineers in India to obtain an initial assessment of water quality parameters for the selection and subsequent development of new riverbank filtration (RBF) sites. Consequently, a snapshot screening of organic and inorganic water quality parameters, including major ions, inorganic trace elements, dissolved organic carbon (DOC), and 49 mainly polar organic micropollutants (OMPs) was conducted at 21 different locations across India during the monsoon in June–July 2013 and the dry non-monsoon period in May–June 2014. At most existing RBF sites in Uttarakhand, Jammu, Jharkhand, Andhra Pradesh, and Bihar, surface and RBF water quality was generally good with respect to most inorganic parameters and organic parameters when compared to Indian and World Health Organization drinking water standards. Although the surface water quality of the Yamuna River in and downstream of Delhi was poor, removals of DOC and OMPs of 50% and 13%–99%, respectively, were observed by RBF, thereby rendering it a vital pre-treatment step for drinking water production. The data provided a forecast of the water quality for subsequent investigations, expected environmental and human health risks, and the planning of new RBF systems in India

    Influence of upwelling Zechstein sulphate on the concentration and isotope signature of sedimentary sulphides in a fluvioglacial sand aquifer.

    No full text
    Very low concentrations of total S, mainly sedimentary sulphides, were quantitatively extracted from Quaternary sands of the Elbe Basin, using HNO3, Br2 and HCl, to distinguish 3 aquifer zones: &bull; an upper aerobic section, containing low concentrations (only a few ppm) of non-sulphidic S compounds, &bull; the central and lower part of the aquifer, dominated by 34S-depleted sedimentary Fe sulphides, formed by reduction of infiltrating SO4, derived from groundwater recharge, and &bull; the lowest 5&ndash;10 m of the aquifer, containing high concentrations of 34S-enriched sulphides. The latter originated from dissolved Zechstein SO4, which was reduced during upwelling through the organic-rich Tertiary aquiclude. H2S and HS&minus; reacted and precipitated with Fe and other metal ions shortly after migration into the Corg-poor Quaternary aquifer. The sulphides yield valuable information concerning the ascent of confined saline solutions from isolated Zechstein evaporites inside the &ldquo;M&uuml;hlberger Graben&rdquo;, which is covered by Cenozoic sediments and whose extension and boundaries are therefore not well defined. Only a few locations, close to faults and geological windows, show deep-water admixture sufficiently strong to cause visible changes in hydrochemistry and isotopic ratios of SO4 and DIC directly above the base of the Quaternary. Sulphides showing different origins may possibly be used in other areas to provide information concerning underlying geology and hydrodynamics
    • …
    corecore