12 research outputs found

    Serological reactivity against T. cruzi-derived antigens: Evaluation of their suitability for the assessment of response to treatment in chronic Chagas disease.

    Get PDF
    Chagas disease, caused by the protozoan Trypanosoma cruzi, affects more than 6 million people worldwide. Following a mostly asymptomatic acute phase, the disease progresses to a long-lasting chronic phase throughout which life-threatening disorders to the heart and/or gastrointestinal tract will manifest in about 30% of those chronically infected. During the chronic phase, the parasitemia is low and intermittent, while a high level of anti-T. cruzi antibodies persist for years. These two features hamper post-chemotherapeutic follow-up of patients with the tools available. The lack of biomarkers for timely assessment of therapeutic response discourages a greater use of the two available anti-parasitic drugs, and complicates the evaluation of new drugs in clinical trials. Herein, we investigated in a blinded case-control study the serological reactivity over time of a group of parasite-derived antigens to potentially address follow up of T. cruzi chronically infected subjects after treatment. We tested PFR2, KMP11, HSP70, 3973, F29 and the InfYnity multiplexed antigenic array, by means of serological assays on a multi-national retrospective collection of samples. Some of the antigens exhibited promising results, underscoring the need for further studies to determine their potential role as treatment response biomarkers.We thank Dr. A. Egui, Dr A. Fernández-Villegas and A. López-Barajas from IPBLNsingle bondCSIC (Granada, Spain), Carme Subirá from ISGlobal (Barcelona, Spain), and Suelene B. N. Tavares from Hospital das Clínicas (Goiás, Brazil) for their technical assistance. We also want to thank Dr. B. Carrilero from Hospital Virgen de la Arrixaca (Murcia, Spain), Dr. Dayse E.C. de Oliveira from Hospital das Clínicas (Goiás, Brazil), and Dr. Raúl Chadi from Hospital General de Agudos “Dr. I. Pirovano” for their clinical follow up of patients. ISGlobal authors thanks the support by the Departament d'Universitats i Recerca de la Generalitat de Catalunya, Spain (AGAUR; 2017SGR00924), funding by the Instituto de Salud Carlos III project PI18/01054 and RICET Network for Cooperative Research in Tropical Diseases (RD12/0018/0010) and FEDER, and the support to ISGlobal from the Spanish Ministry of Science Innovation and Universities through the “Centro de Excelencia Severo Ochoa 2019–2023″ Program (CEX2018–000806-S), and from the Generalitat de Catalunya through the CERCA Program. IPBLN work was financially supported by grants SAF2016–81003-R and SAF2016–80998-R from the Programa Estatal I + D + i (MINECO) and ISCIII RICET (RD16/0027/0005) and FEDER. MJP research is supported by the Ministry of Health, Government of Catalunya (PERIS 2016–2010 SLT008/18/00132). TAJ thanks the support of Conselho Nacional de Pesquisa e Desenvolvimento Tecnologico (CNPq/ 313011/2018–4) and Fundação Oswaldo Cruz/MS (25380.001603/2017–89). Authors also thank Drugs for Neglected Diseases initiative and Fundacion Mundo Sano for financial support. For this project, DNDi received financial support from the following donors: UK Aid, UK; Directorate-General for International Cooperation (DGIS), The Netherlands; Swiss Agency for Development and Cooperation (SDC), Switzerland; Médecins Sans Frontières (MSF), International. The donors had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Molecular data supports monophyly of Triatoma dispar complex within genus Triatoma

    No full text
    The genus Triatoma contains numerous species, principal or secondary vectors of Chagas disease, which have been included in the three main lineages of Triatomini tribe based on morphological and biogeographical characteristics : North American, South American, and T. dispar complex. The three members of the T. dispar complex are distributed in Ecuador. This complex has been scarcely studied through molecular approaches, and the taxonomic position of this complex is not confirmed. In this study, we explored the phylogenetic relation-ships within the genus Triatoma, including five species from North and Central America, six from South America, and the three species belonging to the T. dispar complex. Partial sequences of four mitochondrial genes (Cyt b,COII,16S-rRNA,12S-rRNA) and two nuclear genes (18S-rRNA,ITS2) were obtained from 74 specimens. Phylogenetic trees were built with concatenated and single sequences through maximum likelihood (ML), maximum parsimony (MP), and Bayesian methods. The trees built using concatenated sequences showed three main branches (clusters) highly supported by significant bootstrap values; the T. dispar complex appeared as amonophyletic group separate from species of North and Central American origin and South American origin. On the contrary, for each gene tree, the three main clusters were not always significantly supported, mostly because genetic information is dramatically reduced when a single gene is considered. Consequently, concatenation of genes gives relevant results and is highly recommended for further in-depth examination of the relationships of several species and complexes of triatomines that remain unresolved. Moreover, our current molecular data fully revealed the division of genusTriatomainto at least three main genetic groups

    Target product profile for a test for the early assessment of treatment efficacy in chagas disease patients: An expert consensus

    Get PDF
    descripción no proporcionada por scopusISGlobal work is supported by the Departament d’Universitats i Recerca de la Generalitat de Catalunya, Spain (AGAUR; 017SGR00924) and by the Instituto de Salud Carlos III (ISCIII) RICET Network for Cooperative Research in Tropical Diseases (ISCIII; RD16/0027/0004 - PI1290) and FEDER. MJP research is supported by the Ministry of Health, Government of Catalonia (PERIS 2016-2010 SLT008/18/00132). ICA, JG, and FT are supported by the grant number U01AI129783 from the National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH). ICA is also partly supported by the grant number 5U54MD007592 from the National Institute on Minority Health and Health Disparities (NIMHD), NIH. MCL and MCT were supported by ISCIII RICET grant RD16/0027/0005 - PI1290 and FEDER and by grants SAF2016-81003-R and SAF2016-80998-R from the Spanish “Programa Estatal I+D+i (MINECO)”. AA's work was supported by the Italian Ministry of Health “Fondi Ricerca Corrente - Linea 3, progetto 9” to IRCCS Sacro Cuore Don Calabria Hospital. JR was supported by CONACyT Fossis grant #261006. The Drugs for Neglected Diseases initiative (DNDi) is grateful to its donors, public and private, who have provided funding to DNDi since its inception in 2003. A full list of DNDi's donors can be found at http://www.dndi.org/donate/donors/. FIND is grateful to its donors, public and private, who have helped bring innovative new diagnostics for diseases of poverty. A full list of FIND’s donors can be found at: https://www.finddx.org/partners-donors/. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript
    corecore