243 research outputs found

    The catalytic role of beta effect in barotropization processes

    Get PDF
    The vertical structure of freely evolving, continuously stratified, quasi-geostrophic flow is investigated. We predict the final state organization, and in particular its vertical structure, using statistical mechanics and these predictions are tested against numerical simulations. The key role played by conservation laws in each layer, including the fine-grained enstrophy, is discussed. In general, the conservation laws, and in particular that enstrophy is conserved layer-wise, prevent complete barotropization, i.e., the tendency to reach the gravest vertical mode. The peculiar role of the β\beta-effect, i.e. of the existence of planetary vorticity gradients, is discussed. In particular, it is shown that increasing β\beta increases the tendency toward barotropization through turbulent stirring. The effectiveness of barotropisation may be partly parameterized using the Rhines scale 2πE01/4/β1/22\pi E_{0}^{1/4}/\beta^{1/2}. As this parameter decreases (beta increases) then barotropization can progress further, because the beta term provides enstrophy to each layer

    On the superposition of mean advective and eddy-induced transports in global ocean heat and salt budgets

    Get PDF
    Ocean thermal expansion is a large contributor to observed sea level rise, which is expected to continue into the future. However, large uncertainties exist in sea level projections among climate models, partially due to intermodel differences in ocean heat uptake and redistribution of buoyancy. Here, the mechanisms of vertical ocean heat and salt transport are investigated in quasi-steady-state model simulations using the Australian Community Climate and Earth-System Simulator Ocean Model (ACCESS-OM2). New insights into the net effect of key physical processes are gained within the superresidual transport (SRT) framework. In this framework, vertical tracer transport is dominated by downward fluxes associated with the large-scale ocean circulation and upward fluxes induced by mesoscale eddies, with two distinct physical regimes. In the upper ocean, where high-latitude water masses are formed by mixed layer processes, through cooling or salinification, the SRT counteracts those processes by transporting heat and salt downward. In contrast, in the ocean interior, the SRT opposes dianeutral diffusion via upward fluxes of heat and salt, with about 60% of the vertical heat transport occurring in the Southern Ocean. Overall, the SRT is largely responsible for removing newly formed water masses from the mixed layer into the ocean interior, where they are eroded by dianeutral diffusion. Unlike the classical advective–diffusive balance, dianeutral diffusion is bottom intensified above rough bottom topography, allowing an overturning cell to develop in alignment with recent theories. Implications are discussed for understanding the role of vertical tracer transport on the simulation of ocean climate and sea level

    Anisotropic domain walls

    Get PDF
    We find an anisotropic, non-supersymmetric generalization of the extreme supersymmetric domain walls of simple non-dilatonic supergravity theory. As opposed to the isotropic non- and ultra-extreme domain walls, the anisotropic non-extreme wall has the \emph{same} spatial topology as the extreme wall. The solution has naked singularities which vanish in the extreme limit. Since the Hawking temperature on the two sides is different, the generic solution is unstable to Hawking decay.Comment: 11 pages, LaTeX, 3 PostScript figures, uses amstex and epsfi

    Non-Extreme and Ultra-Extreme Domain Walls and Their Global Space-Times

    Get PDF
    Non-extreme walls (bubbles with two insides) and ultra-extreme walls (bubbles of false vacuum decay) are discussed. Their respective energy densities are higher and lower than that of the corresponding extreme (supersymmetric), planar domain wall. These singularity free space-times exhibit non-trivial causal structure analogous to certain non-extreme black holes. We focus on anti-de~Sitter--Minkowski walls and comment on Minkowski--Minkowski walls with trivial extreme limit, as well as walls adjacent to de~Sitter space-times with no extreme limit.Comment: Revised version, 4 pages of REVTEX, UPR-546-T/Rev. Two figures not included. This version contains further elaboration of the space-time causal structur

    Localized rapid warming of West Antarctic subsurface waters by remote winds

    Get PDF
    The highest rates of Antarctic glacial ice mass loss are occurring to the west of the Antarctica Peninsula in regions where warming of subsurface continental shelf waters is also largest. However, the physical mechanisms responsible for this warming remain unknown. Here we show how localized changes in coastal winds off East Antarctica can produce significant subsurface temperature anomalies (>2 °C) around much of the continent. We demonstrate how coastal-trapped barotropic Kelvin waves communicate the wind disturbance around the Antarctic coastline. The warming is focused on the western flank of the Antarctic Peninsula because the circulation induced by the coastal-trapped waves is intensified by the steep continental slope there, and because of the presence of pre-existing warm subsurface water offshore. The adjustment to the coastal-trapped waves shoals the subsurface isotherms and brings warm deep water upwards onto the continental shelf and closer to the coast. This result demonstrates the vulnerability of the West Antarctic region to a changing climate.P.S. was supported by an Australian Research Council (ARC) DECRA Fellowship DE150100223, A.M.H. by an ARC Future Fellowship FT120100842 and M.H.E. by an ARC Laureate Fellowship FL100100214 and R.M.H. by an ARC Discovery Project DP150101331

    Cauchy Horizons, Thermodynamics and Closed Time-like Curves in Planar Supersymmetric Space-times

    Full text link
    We study geodesically complete, singularity free space-times induced by supersymmetric planar domain walls interpolating between Minkowski and anti-de Sitter (AdS4AdS_4) vacua. A geodesically complete space-time without closed time-like curves includes an infinite number of semi-infinite Minkowski space-times, separated from each other by a region of AdS4AdS_4 space-time. These space-times are closely related to the extreme Reissner Nordstr\" om (RN) black hole, exhibiting Cauchy horizons with zero Hawking temperature, but in contrast to the RN black hole there is no entropy. Another geodesically complete extension with closed time-like curves involves space-times connecting a finite number of semi-infinite Minkowski space-times.Comment: 11 pages, 1 figure appended, phyzz

    Preconditioning of the Weddell Sea Polynya by the Ocean Mesoscale and Dense Water Overflows

    Get PDF
    The Weddell Sea polynya is a large opening in the open-ocean sea ice cover associated with intense deep convection in the ocean. A necessary condition to form and maintain a polynya is the presence of a strong subsurface heat reservoir. This study investigates the processes that control the stratification and hence the buildup of the subsurface heat reservoir in the Weddell Sea. To do so, a climate model run for 200 years under preindustrial forcing with two eddying resolutions in the ocean (0.25° CM2.5 and 0.10° CM2.6) is investigated. Over the course of the simulation, CM2.6 develops two polynyas in the Weddell Sea, while CM2.5 exhibits quasi-continuous deep convection but no polynyas, exemplifying that deep convection is not a sufficient condition for a polynya to occur. CM2.5 features a weaker subsurface heat reservoir than CM2.6 owing to weak stratification associated with episodes of gravitational instability and enhanced vertical mixing of heat, resulting in an erosion of the reservoir. In contrast, in CM2.6, the water column is more stably stratified, allowing the subsurface heat reservoir to build up. The enhanced stratification in CM2.6 arises from its refined horizontal grid spacing and resolution of topography, which allows, in particular, a better representation of the restratifying effect by transient mesoscale eddies and of the overflows of dense waters along the continental slope.C. O. Dufour was supported by the National Aeronautics and Space Administration (NASA) under Award NNX14AL40G and by the Princeton Environmental Institute (PEI) Grand Challenge initiative. A. K. Morrison was supported by the U.S. Department of Energy under Award DE-SC0012457, by the PEI Grand Challenge initiative, and by the Australian Research Council DECRA Fellowship DE170100184. I. Frenger was supported by the Swiss National Science Foundation Early Postdoc Mobility Fellowship P2EZP2-152133 and NASA under Award NNX14AL40G
    corecore