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A perspective is given on current and future capabilities in global high-resolution  

climate simulation for assessing climate risks over the next few decades.

THE BENEFITS OF GLOBAL 
HIGH RESOLUTION FOR 
CLIMATE SIMULATION

Process Understanding and the Enabling of 
Stakeholder Decisions at the Regional Scale

M. J. Roberts, P. L. Vidale, C. Senior, H. T. Hewitt, C. Bates, S. Berthou, P. Chang,  
H. M. Christensen, S. Danilov, M.-E. Demory, S. M. Griffies, R. Haarsma, T. Jung, G. Martin,  

S. Minobe, T. Ringler, M. Satoh, R. Schiemann, E. Scoccimarro, G. Stephens, and M. F. Wehner

O	ur capability to perform global climate model  
	simulations suitable to inform societal action  
	is constrained by both available computer 

resources and the efficiency of the algorithms used 
in our models. Multi-exaf lop computer power 
would be needed for global climate models to 
produce multimember-ensemble, multicentury 
simulations at resolutions capable of resolving 
macroscopic cloud features and ocean mesoscale 
eddies. Estimates suggest that such computer power 
is at least a decade away. Yet, given the enormous 
scale of supercomputing about to be used for the next 
Coupled Model Intercomparison Project (CMIP6; 
Eyring et al. 2016), we feel that this is a particu-
larly important time to review our current status in 
present-day high-resolution global climate modeling.

At one extreme, numerous climate model simu-
lations are performed as part of each CMIP cycle 
(Meehl et al. 2000, 2007; K. E. Taylor et al. 2012; 
Eyring et al. 2016), organized by the World Climate 
Research Programme (WCRP). Such models typically 
include aspects of Earth system complexity such as 
biogeochemistry, and simulations including several 
ensemble members are usually completed. However, 
in order to achieve this task, the horizontal resolution 

has traditionally been compromised, typically to 
~150 km or coarser in the atmosphere and 1° in the 
ocean. This means that important climate processes 
(such as atmospheric convection and ocean mesoscale 
boundary currents and eddies) have had to be pa-
rameterized rather than resolved, and dynamical 
processes and interactions can be compromised 
(Collins et al. 2018).

At t he opposite ex treme, t he next major 
breakthrough in simulation may be reached at scales 
below 1 km in the atmosphere, as we come close to 
resolving the largest of boundary layer eddies, the 
macroscopic cloud features, and convective organi-
zation (Schneider et al. 2017). Several global models 
[e.g., the Nonhydrostatic Icosahedral Atmospheric 
Model (NICAM); Satoh et al. 2008, 2014] are now 
able to complete global simulations at subkilometer 
grid spacing (Miyamoto et al. 2013). Such individual 
simulations are currently short (<1 year), have only a 
minimal number of Earth system processes included, 
and challenge our observational abilities, owing to 
the limited time and space sampling from satellites. 
However, they can be used to gain insights into 
poorly understood interactions (such as aerosol–
microphysics–cloud interactions; e.g., Hashino et al. 
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2013). Such models are also generally nonhydrostatic 
and hence able to better represent organized con-
vective processes and small-scale structures in, for 
example, tropical cyclones. Considerable uncertain-
ties remain, but such tools are key for future process 
understanding.

In between these two fundamental scale bound-
aries, gradual refinements in resolution might be 
considered to afford only marginal benefits for our 
understanding of climate variability and change. 
However, here we aim to demonstrate that signifi-
cant improvements in understanding are afforded 
by global models at intermediate resolutions, which 
are vital for projections over the next few decades. 
We show evidence that the large-scale circulation is 
significantly improved in the atmosphere using reso-
lutions finer than 100 km, despite the Rossby radius 
being ~1,000 km and hence “resolved” in CMIP-type 
models. For the ocean, the Rossby radius is finer than 
100 km and hence unresolved in most CMIP-ocean 
models, with potentially important consequences for 
climate simulation (Hewitt et al. 2017).

Global numerical weather prediction (NWP) 
models have paved the way for developments in cli-
mate modeling and systematically demonstrated the 
added benefits of enhanced resolution, albeit in the 
context of initialized forecasts, which also benefit 
from advances in other components (such as data 
assimilation, ensemble size, number of observations 
and other model improvements; Magnusson and 
Källén 2013; Bauer et al. 2015). With the advent of 
seamless modeling approaches (e.g., Senior et al. 
2009; Brown et al. 2012), NWP and climate models 

are becoming equivalent in their scientific configu-
rations, and many biases seen in long-term climate 
simulations are already evident after days of an NWP 
forecast (Martin et al. 2010). An example of monitor-
ing progress in NWP, citing resolution as one aspect 
of improvements in skills scores, is shown in Fig. 10 
of Rodwell et al. (2010). A more general, high-level 
review of the benefits of resolution in NWP models 
is provided by Wedi (2014).

Hence, some of the following evidence from cli-
mate models is far from unique to them. However, 
aspects of the hydrological cycle have typically not 
been a part of NWP skill assessments [which, e.g., 
usually concentrate on large-scale quantities that are 
relevant to users on short-range time scales, such as 
500-hPa height and 250-hPa winds and temperature; 
see references above and Mittermaier et al. (2016)]. 
In addition, and more crucially, the NWP modeling 
systems are typically neither radiatively balanced nor 
water-conserving so are not well placed for systematic 
process studies of water cycle processes on longer time 
and space scales.

Regional models are increasingly being used for 
climate studies at resolutions of several kilometers 
(Kendon et al. 2017). One could argue that this 
approach mitigates the need for refinements to 
global model resolutions. Indeed, if the requirement 
is to understand local processes (such as convective 
precipitation) and extremes in terms of their local 
impacts, then such models currently represent our 
best tools. However, the regional models’ represen-
tation of the large-scale circulation is no better than 
that of the driving global model (otherwise it would 
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not be well constrained), and this requires the global 
model to credibly represent global modes of vari-
ability and dynamic and thermodynamic responses 
to climate forcing. Hence, it is key to make the 
large-scale circulation as accurate as possible, as this 
provides critical information needed for the regional 
downscaling to offer added information. We will 
argue that it is precisely at these synoptic scales that 
the new generation of high-resolution global models 
are showing substantial improvement in the mean 
state and variability.

We ask in this paper what we can learn from the 
range of models at global resolutions that are now or 
will soon become affordable on flagship supercom-
puters worldwide. In particular we ask what added 
value such enhanced models provide in terms of the 
simulated hydrological cycle and thus the trustwor-
thiness and robustness of current climate projections 
particularly over the next few decades.

THE GLOBAL HYDROLOGICAL CYCLE. 
One of the key questions for climate research is how 
the global water cycle might change in the next few 
decades. At its most basic, the global water cycle 
describes the movement of water between the dif-
ferent reservoirs in the climate system—in and on 
the ocean (including sea ice and ice shelves), over 
and below the land surface (surface and ground-
water, land ice), and the corresponding energy 
exchanges. It is therefore implicated in many of the 
impacts that climate change brings—excess water 
(f looding, tropical and midlatitude storms, atmo-
spheric rivers), lack of water (drought), and intensity 
of storms (concurrently regulated by energy and 
momentum exchanges).

The representation of the global water cycle in 
coupled climate models, and in particular some of 
its governing processes, is subject to much larger 
variability among models than other (thermody-
namic) indicators. One can contrast the significant 
agreement in CMIP5 (Flato et al. 2013), expressed by 
model projections of future warming rates and pat-
terns, against the disagreement in projected precipita-
tion changes, which showed little improvement over 
the earlier CMIP3 assessment. Although precipitation 
does not represent the whole water cycle, and our 
observational record is short and uncertain, such 
fundamental disagreements do not build confidence 
in future projections.

Part of the reason for this uncertainty is the lack 
of representation of the dynamical aspects of the 
coupled climate system, as well as how these are 
coupled to the physical aspects of model simulation. 

At the largest scales, on the order of the Rossby radius, 
model physics (i.e., column processes) dominate 
the under resolved dynamics in atmosphere and 
ocean (Trenberth et al. 2011; Demory et al. 2014). 
As resolution increases and the synoptic and meso-
scales become better resolved, then they both play an 
important role—perhaps at a minimal resolution of 
around 50 km (Matsueda and Palmer 2011; Delworth 
et al. 2012; Demory et al. 2014). As resolution increase 
continues toward the 1-km scale, multiscale dynamics 
increasingly dominates column physics [see, e.g., the 
discussion in Vellinga et al. (2016)].

Large-scale moisture transports. Studies focusing on 
the impact of resolution on the simulated global 
hydrological cycle as a whole remain quite rare (Pope 
and Stratton 2002; Hack et al. 2006; Hagemann et al. 
2006; Demory et al. 2014). Demory et al. (2014) find 
that the simulation of a select few components of 
the global hydrological cycle is degraded by increas-
ing model resolution because of an overall excess 
in net available energy at the surface that is caused 
by errors in model physics. However, they find that 
the overall hydrological cycle is intensified by global 
grid refinement and for consistent reasons, resulting 
in a strength that compares well with observations 
(e.g., as in Trenberth et al. 2011). This is manifested 
by less precipitation over the ocean and more pre-
cipitation over land, caused by enhanced large-scale 
atmospheric moisture transport from the ocean to 
the land, reducing the commonly overestimated 
precipitation recycling over land. At midlatitudes, 
this increase in the large-scale atmospheric moisture 
transport is particularly associated with the storm-
track regions. Notably, such multiscale interactions 
can only be studied with global models. Demory et al. 
(2014) also uncovered a locally asymptotic response 
of the midlatitude large-scale atmospheric moisture 
transport, starting at about 60-km grid size, which 
seems to be within recent observational estimates 
(Trenberth et al. 2011). There are indications that 
other models show similar sensitivity to resolution 
(Terai et al. 2017; Vanniere et al. 2018, manuscript 
submitted to Climate. Dyn.).

Surface water balance and precipitation distribution. 
Precipitation, evaporation, runoff, and storage 
variations characterize the water balance over any 
land area. All four of these quantities are difficult 
to observe and to simulate by global climate models, 
and our current ability to close the water balance 
remains highly unsatisfactory over the global land 
area and much more so at the scales of continents or 
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large river basins. One example of these uncertain-
ties is illustrated in Fig. 1: total global precipitation 
is remarkably resolution invariant, which points to a 
very robust constraint provided by global longwave 
cooling in all model simulations, producing precipi-
tation estimates within the range of significant and 
persistent observational uncertainty [see estimates 
by GPCP vs Wild et al. (2015) vs Stephens et al. 
(2012)]. Further, increasing the resolution in the 
Hadley Centre Global Environment Model, version 3 
(HadGEM3), atmospheric general circulation model 
(GCM) (GA3; Mizielinski et al. 2014) from about 100 
to 25 km changes the model estimate of precipita-
tion partitioning. Land versus sea distribution of 
precipitation agrees with the findings in Demory 
et al. (2014); additionally, for the land portion, global 
(rugged) mountain precipitation increases by about 
15%, and available observations, which are sparse 
over complex terrain, are hardly able to assess these 
model estimates. Precipitation over comparatively 

small mountain areas is particularly important since 
it disproportionately contributes to runoff and there-
fore the generation of so-called blue water, which 
sustains ecosystems and human livelihood.

Given such uncertainties in global precipitation, it 
is not surprising that regional distributions are also 
poorly estimated. Figure 2, reproduced from Wehner 
et al. (2014), shows an analysis of annual daily total 
precipitation distributions from three different hori-
zontal resolutions of the Community Atmosphere 
Model, version 5.1 (CAM5.1), for a number of regions. 
There is some evidence that, at resolutions finer than 
25 km, grid separation is no longer the limiting factor 
in reproducing observations (e.g., Hawcroft et al. 
2016) and that deficiencies in subgridscale param-
eterizations dominate the model errors (Wehner et al. 
2014), particularly when convection is an important 
contributor to the local atmospheric water budget.

Using the same ensemble of GA3 atmospheric 
model simulations as Demory et al. (2014) at 130-, 

Fig. 1. Long-term mean precipitation estimates from different sources over the ocean, flat terrain, and moun-
tainous terrain (see inset; mountainous area is 25% of total land area). Bar chart labels: N96, N216, and N512 
are 130-, 60-, and 25-km-resolution simulations, respectively, using HadGEM3-GA3 (Mizielinski et al. 2014); 
N480 and “N480, N96 orography” are GA6 (Walters et al. 2017) simulations at 27-km resolution, the latter 
with orography degraded to N96 (130 km) resolution; N96*, N216*, and N512* are similar to N96, N216, and 
N512 as above, but with estimates scaled by the global surface net shortwave radiation bias. Observation-based 
estimates: GPCP (GPCP v2.2; Adler et al. 2012), Wild et al. (2015) (uncertainties not shown), Wild et al. (2013), 
Stephens et al. (2012), and Trenberth et al. (2009).
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Fig. 2. Comparisons of the annual probability density distributions (y axis) of daily precipitation (mm day–1; 
x axis) between the models and location-specific gridded observations as indicated by the dataset name 
in parentheses. (a) Global land and ocean (GPCP), (b) global land only [University of Washington (UW)-
Global], (c) tropical land and ocean, 20°S–20°N (TRMM), (d) continental United States (CONUS) (UW-
CONUS), (e) Asia [Asian Precipitation—Highly Resolved Observational Data Integration Toward Evalua-
tion of Water Resources (APHRODITE)], and (f) Europe [European daily high-resolution gridded dataset 
(E-OBS)]. Red, blue, green, and black lines, respectively, represent the 2° CAM5.1, 1° CAM5.1, and 0.25° 
CAM5.1. Observations are represented by the black line in (a) and by gray shading in Figs. (b)–(e), indicating 
the range of available datasets. Daily precipitation was remapped onto the 2° grid before computing the 
distributions in all cases. Any precipitation rates larger than 100 mm day–1 are assigned to the last bin 
for normalization purposes that sometimes results in an uptick at the end of the plot. Reproduced from 
Wehner et al. (2014).
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60-, and 25-km resolution (referred to as N96, N216, 
and N512, respectively), the precipitation distribu-
tion in each Intergovernmental Panel on Climate 
Change (IPCC) Special Report on Managing the 
Risks of Extreme Events and Disasters to Advance 
Climate Change Adaptation (SREX) region is used 
to determine which model resolution best fits the 
multiple observational datasets available over that 
region (see appendix for details). Figure 3 shows the 
coarsest best resolution for each region. Several key 
points become evident:

1)	 In most regions a resolution finer than 130 km is 
worthwhile.

2)	 Globally, 60 km may be sufficient for this metric, 
but there are some regions (e.g., West Africa, 
Southeast Asia) that consistently favor 25-km 
resolution, often where land–sea contrasts and/
or mountainous terrain exist; note also that at 
latitudes poleward of 50°, the only long-term 
global observational datasets have resolutions of 
110 km, and hence it is not possible to properly 
assess higher-resolution models.

3)	 There are some regions that are uncertain, either 
because no model is clearly better or because the 
observational datasets disagree too much with 
each other to assign a best model resolution (i.e., 
we do not know the climatology well enough to 
validate models).

Dynamical processes and moisture transport. Correct 
attribution of the processes responsible for the global 

distribution of precipitation is key, because models 
that produce a reasonable climatology via demonstra-
bly incorrect processes cannot be trusted for climate 
projections of rainfall.

Extratropical cyclones. One likely component 
driving the sensitivity of simulated moisture trans-
port and precipitation to resolution is the moisture 
transport affected by dynamical processes such as 
cyclones (both tropical and midlatitudes). Storms 
provide a considerable proportion of annual rainfall 
in many regions of the world (Scoccimarro et al. 
2014; Guo et al. 2017), and as such representing their 
frequency, variability, position, and composition 
is important. Catto et al. (2010) and Zappa et al. 
(2013) show that extratropical storm structure and 
intensity are better represented at resolutions finer 
than 100 km, and hence so is the moisture transport 
associated with them. Jung et al. (2012) demonstrate 
significantly improved extratropical cyclone fre-
quency when moving from 130- to 40-km resolution, 
with little change at finer grid spacings.

Tropical cyclones and AEWs. There is mounting evi-
dence from many modeling studies that atmosphere 
resolutions at 50 km or finer skillfully represent the 
interannual variability of tropical cyclones (Zhao 
et al. 2009; Manganello et al. 2012; Roberts et al. 2015; 
Kodama et al. 2015). In the Atlantic, much of this 
improvement can be attributed to better global telecon-
nections (from El Niño; e.g., Bell et al. 2014) providing 
a constraint on the environment and improved dy-

namical precursor features 
such as African easterly 
waves (AEWs). Despite the 
latter being relatively large-
scale dynamical systems, 
they are poorly represent-
ed at ~100-km grid scales 
(Martin and Thorncroft 
2015; Caron et al. 2011). 
This reemphasizes the 
danger of assuming that 
representation by at least 
two grid points is sufficient 
for resolving features.

Tropical cyclone impor-
tance is not only limited 
to producing high-impact 
events: Guo et al. (2017) 
showed that typhoons in 
East Asia produce about 50% 
of precipitation in coastal 

Fig. 3. Map showing the lowest-best-resolution model for each region as 
defined in the appendix by comparing daily precipitation histograms: N512 = 
25-km, N216 = 60-km, and N96 = 130-km midlatitude resolution. Uncertain 
implies either no model is clearly better or observational uncertainty is too 
large to determine a best model.
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areas at the peak of the sea-
son but also contribute a siz-
able portion of the moisture 
transport that supports all 
other types of precipita-
tion farther inland. Further, 
their net contribution to 
the regional moisture bud-
get of China is comparable 
albeit opposite to that of the 
monsoon at the time of its 
recession. Scoccimarro et al. 
(2014) show a similar result 
for the North Atlantic tropi-
cal cyclones and U.S. pre-
cipitation, while Pantillon 
et al. (2015) show a remote 
l ink to Mediterranean 
rainfall events. These im-
pacts require fidelity in 
storm characteristics, with 
Fig. 4 (from Manganello 
et al. 2012) illustrating the 
improvement of storm gen-
esis and track as model reso-
lution is enhanced, while 
Scoccimarro et al. (2017) 
demonstrated the additional 
importance of high-frequen-
cy coupling between atmo-
sphere and ocean.

M e s o s c a l e  co n v e c t i v e 
systems. In addition to storms 
influencing the mean precip-
itation, Vellinga et al. (2016) 
have shown important scale 
interactions between large-
scale variability and smaller 
scales. Decadal variability 
in Sahel rainfall is shown 
to be related to the interac-
tion between the large-scale 
Atlantic multidecadal oscil-
lation (AMO) and AEWs. 
Only model resolutions fine enough (at 60 km and finer 
in that study) to represent stronger, self-organized (at 
the mesoscale), and propagating rainfall events capture 
the observed decadal trends. There are indications 
that other CMIP5 models follow this relationship, but 
analysis is complicated by confounding factors such as 
different aerosol loadings, indicating a need for a more 
systematic set of comparable simulations.

Westerly wind bursts. Aforementioned dynamical 
precursor systems such as AEWs are also found to be 
important in driving variability in other dynamical 
systems. If they are poorly represented in models, 
this can significantly bias the simulated mean state 
and hence lead to misleading future projections. One 
example would be the westerly wind bursts (WWBs) 
in the tropical Pacific that precede El Niño events; 

Fig. 4. North Atlantic Ocean (left) genesis and (right) track densities as num-
ber density per season per unit area equivalent to a 5° spherical cap for (a),(f) 
International Best Track Archive for Climate Stewardship (IBTrACS) (Obs) 
and Integrated Forecast System (IFS) simulations at (b),(g) T2047, (c),(h) 
T1279, (d),(i) T511, and (e),(j) T159 resolutions. Reproduced from Manganello 
et al. (2012) with permission by the authors.
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in observations the irregular variability of El Niño–
Southern Oscillation (ENSO) has been attributed to 
such WWB events (Puy et al. 2017). It may be possible 
that the inclusion of stochastic schemes (Christensen 
et al. 2017) enables some of the aspects of these pre-
cursor systems to be replicated. However, develop-
ment of such stochastic schemes is best informed by 
models able to simulate the dynamical aspects of these 
processes, as well as the physics–dynamics coupling.

Monsoons. In the tropics, the monsoon circulations 
provide a large portion of annual rainfall to many 
regions. There are many components and individual 
processes within these circulations (flow reversals, 
orographic interactions, land–sea contrasts, sensitiv-
ity to remote biases), and this may be why increased 
model resolution does not directly lead to improved 
monsoon simulation (Ogata et al. 2017; Johnson et al. 
2016). Individual components do indicate a resolution 
sensitivity (such as monsoon depressions; Johnson 
et al. 2016), but reduction of remote biases to improve 
the regional mean state may be equally important 
(Levine and Martin 2018; Martin et al. 2010).

Atmospheric blocking. At midlatitudes, the representa-
tion of storm tracks and blocking play important roles 
in the large-scale dynamics of the water cycle. Dawson 
et al. (2012) demonstrate a large improvement in the 
structure of Euro-Atlantic weather regimes in a model 
run at 16 km compared to one run at 150 km, while 
Dawson and Palmer (2015) show a 40-km simulation 
has intermediate regime fidelity. The distribution, 
frequency, and development of European blocking 
has been shown to be influenced by aspects of atmo-
sphere and ocean resolution (Berckmans et al. 2013). 
Schiemann et al. (2017) showed some improvement 
in blocking in a multimodel atmosphere ensemble 
at 25 km compared to ~100 km, consistent with Jung 
et al. (2012) results when moving from 130 to 40 km. 
Scaife et al. (2011) showed how reducing large-scale 
model biases in the North Atlantic with a 1/4° ocean 
resolution led to improved frequency of European 
blocking. O’Reilly et al. (2016) studied blocking and 
extended cold spells over Europe and showed that 
the resolution of remote SST fronts was a key factor 
in reinforcing the blocking anticyclone and hence 
extending the time scale of the events.

Ocean dynamics. The impact of resolution on 
dynamical processes affecting the hydrological cycle 
is not limited to the atmosphere. In particular, the 
transport of freshwater is related to the stability of 
the meridional overturning circulation (Drifhout 

et al. 2013). Since transport of freshwater can take 
place in narrow currents and eddies, this points to 
an important role for ocean resolution. In the South 
Atlantic, the transport of freshwater is strongly deter-
mined by Agulhas eddies, which move salt from the 
Indian Ocean to the Atlantic Ocean (Drifhout et al. 
2003). In this region, resolution is key to the simula-
tion of the Agulhas retroflection and the shedding 
of eddies (Banks et al. 2007; Biastoch et al. 2008). In 
the North Atlantic, ocean resolution is important for 
capturing the East Greenland Current, which trans-
ports freshwater from both sea ice melt and potential 
ice sheet melt into the Atlantic (Böning et al. 2016).

Land–atmosphere coupling strength. The asymptotic 
behavior with resolution uncovered by Demory et al. 
(2014) and discussed earlier is directly relevant to the 
correct representation of land–atmosphere coupling 
in GCMs: at scales finer than 50 km, the systematic 
overestimation of the contribution of land evaporation 
to precipitation starts to be mitigated by realistic simu-
lation of atmospheric moisture convergence. However, 
observational evidence indicates that we must also 
simulate mesoscale circulations generated by landscape 
heterogeneity, at horizontal scales of 10 km or less. For 
instance, C. M. Taylor et al. (2012) showed that pre-
cipitation over the Sahel occurs over dry land patches, 
but coarse GCMs preferentially produce precipitation 
over moist patches, where convective parameterization 
responds to surface moist static energy. This is because 
they do not represent the mesoscale horizontal trans-
ports of moisture between different land patches. The 
phase of the diurnal cycle of precipitation over land can 
also impact land–atmosphere coupling and is almost 
uniformly poorly simulated in GCMs (Slingo et al. 
1992; Bechtold et al. 2004; Clark et al. 2007; Ackerley 
et al. 2015) with implications for surface energy and 
moisture budgets. Recent convective parameteriza-
tions (e.g., Bechtold et al. 2014) have improved the 
diurnal cycle phase, while Birch et al. (2015) dem-
onstrated similar capability by disabling convective 
parameterization at around 10-km resolution.

Air–sea interactions. The ocean’s mesoscale influence 
on the atmosphere in the extratropics has been known 
from observational analyses for some time, both 
near the surface (e.g., Chelton et al. 2004; Xie 2004) 
and in the free troposphere via precipitation, clouds, 
and upward winds (e.g., Minobe et al. 2008, 2010; 
Tokinaga et al. 2009; Frenger et al. 2013; J. Ma et al. 
2015; Smirnov et al. 2015). However, it has required 
deployment of models with sufficient resolution in 
both the atmosphere and ocean in order to study 
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and understand such interactions at the process level 
(Small et al. 2008; Chelton and Xie 2010; Kwon et al. 
2010; J. Ma et al. 2015; Ma et al. 2017).

Coupled simulations demonstrate fundamental 
changes in the character of atmosphere–ocean cou-
pling once they admit the ocean mesoscale (Bryan 
et al. 2010; Roberts et al. 2016), with modeling con-
firming that SST forces the local winds at frontal 
and mesoscales, as observed (Chelton et al. 2001). In 
contrast, when the ocean model uses a coarse grid 
(1.0° or coarser), the opposite is found (Kirtman et al. 
2012). These results point to the high possibility that 
frontal- and mesoscale air–sea interactions are poorly 
represented in CMIP5 models, consistent with the 
CMIP3 analysis by Maloney and Chelton (2006), with 
potential consequences for the fidelity of simulations 
of the hydrological cycle.

Atmospheric resolution is also important to 
capture coupled responses. For example, the salient 
feature of the Gulf Stream rainband (Minobe et al. 
2008, 2010) is captured by an atmospheric GCM 
of about 50-km grid spacing (Minobe et al. 2008; 
Kuwano-Yoshida et al. 2010; Scher et al. 2017). By 
direct comparisons between high-resolution and low-
resolution regional atmospheric model simulations 
(Willison et al. 2013; Ma et al. 2017; Hawcroft et al. 
2017), it is shown that latent heat release associated 
with extratropical cyclone development is fundamen-
tally important for realistic winter storm simulations, 
and it is only when the model has sufficient resolution 
to resolve small-scale diabatic heating that the full 
effect of mesoscale air–sea interactions on extratropi-
cal cyclogenesis can be correctly simulated.

The remote atmospheric response to oceanic fronts 
and eddies, in comparison to the local response, 
is generally more difficult to identify using direct 
observations (Frankignoul et al. 2011; O’Reilly and 
Czaja 2015); hence, most existing studies are based 
on high-resolution model experiments. A particularly 
useful experimental strategy for this type of study is 
a set of twin atmospheric model simulations, one of 
which is forced by observed SSTs and the other by 
spatially smoothed SSTs (Xie et al. 2002; Minobe et al. 
2008; Kuwano-Yoshida et al. 2010; Small et al. 2014b; 
Piazza et al. 2016; X. Ma et al. 2015, 2017). These 
studies reveal how finescale ocean features influence 
storm density (Minobe et al. 2008; Piazza et al. 2016), 
fronts (Masunaga et al. 2015; Parfitt et al. 2016), jet 
stream shifts (Piazza et al. 2016; X. Ma et al. 2015, 
2017; O’Reilly et al. 2017), storm-track strength (Small 
et al. 2014b), and remote rainfall response along the 
U.S. West Coast to Kuroshio eddies (X. Ma et al. 2015, 
2017; Kuwano-Yoshida and Minobe 2017).

Hydrological extremes. Global models are useful 
for studying extremes in order to account for both 
teleconnected events and for events governed by the 
large-scale environment. For example, the Russian 
heat wave of 2010 was part of the same wave train 
that led to the devastating Pakistan floods (Lau and 
Kim 2012; Watanabe et al. 2013), while Atlantic tropi-
cal cyclones have been shown to affect Arctic sea ice 
cover (Scoccimarro et al. 2012). Assessing model skill 
in tropical cyclone landfalling, where the large-scale 
steering flow is key, is in its infancy (e.g., Camp et al. 
2015; Murakami et al. 2016), but this is clearly an 
important metric for impacts.

Despite improvements in simulation of tropical 
cyclones in CMIP5 (Walsh et al. 2013), only a handful 
of global models showed any tropical cyclones (TCs) 
reaching category 1 hurricane/typhoon intensity. 
More recently the grid spacing in state-of-the-art 
global models has become sufficiently fine (of order 
10–30 km) to realistically represent TCs, even in 
terms of intensity (Manganello et al. 2012; Wehner 
et al. 2014, 2015; Murakami et al. 2015; Walsh 
et al. 2015; Scoccimarro 2016; Scoccimarro et al. 
2017), up to the maximum category 5. Our current 
understanding of future changes to frequency and in-
tensity (Walsh et al. 2015) is based on these relatively 
few capable models, hence indicating a more system-
atic and multimodel study is required to increase our 
confidence in such interpretations.

The higher gradients of moisture and tempera-
ture simulated in high-horizontal-resolution global 
climate models are also important beyond the trop-
ics, and projected to become more important in the 
future. The simulation of extratropical transition 
of tropical systems, and robust future projections 
thereof, show substantial sensitivity to resolution 
(Haarsma et al. 2013), thus representing new chal-
lenges and opportunities for the prediction of the 
changing risks posed by extreme precipitation, winds, 
and storm surge impacting Europe.

FUTURE PROSPECTS AND CHALLENGES. 
There are an increasing number of modeling groups 
able to push our current modeling capability to 
the next level. This includes using kilometer-scale 
global atmosphere and eddy-rich ocean simulations. 
Different methods are being tried to overcome the 
many associated technical challenges, ranging from 
more efficient algorithms to novel numerical meth-
ods. One factor that has so far been lacking is a large 
multimodel, multiresolution ensemble of global 
simulations using a common experimental design 
to enable coordinated analysis. This is the goal of 
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the CMIP6 High Resolution Model Intercomparison 
Project (HighResMIP; Haarsma et al. 2016), which 
proposes a simple experimental design with the 
primary goal of assessing the robustness of projec-
tions across a multimodel ensemble, as a response 
to changes in the representation of climate processes 
with model horizontal resolution.

Using the CMIP6 HighResMIP protocol to create 
a multimodel reference dataset, work within the 
European Union's Horizon 2020 Process-Based 
Climate Simulation: Advances in High-Resolution 
Modelling and European Climate Risk Assessment 
(PRIMAVERA; www.primavera-h2020.eu) project 
and with collaborators will also assess the costs and 
benefits of other advances:

1)	 Stochastic parameterization schemes, which 
attempt to represent the variability of unresolved, 
subgridscale processes (Palmer et al. 2009), offer 
a complementary approach to increasing model 
resolution. Because of nonlinearities in the sys-
tem, including a zero-mean noise into a GCM 
leads to systematic shifts in the climate that can 
reduce model biases (Jung et al. 2005; Williams 
2012; Berner et al. 2015, 2017) and improve 
variability (Lin and Neelin 2000, 2003; Dawson 
and Palmer 2015; Christensen et al. 2015, 2017), 
often analogous to refining model resolution 
(e.g., Berner et al. 2012; Watson et al. 2017). As 
model resolution increases, stochastic approaches 
will become more valuable, as representing the 
interaction of the resolved scales with the subgrid 
through purely deterministic schemes becomes 
harder to justify (Dorrestijn et al. 2013).

2)	 Global cloud-system-resolving models are a 
particularly important tool for understanding 
multiscale structures, such as the large-scale and 
synoptic environment of tropical cyclogenesis 
(Nakano et al. 2017; Yamada et al. 2017) or large-
scale sea breezes and convection initiation (Birch 
et al. 2015). They also demonstrate the potential of 
models in complementing and enhancing obser-
vations, for example, the discovery by Miyakawa 
et al. (2012) of the three-fold structure of con-
vective momentum transport associated with 
the Madden–Julian oscillation (MJO), using the 
high-resolution data by Miura et al. (2007).

3)	 Eddy-rich ocean models: the majority of CMIP5 
climate projections were undertaken using 
coarse (1° or coarser) ocean model components 
(typically with meridional refinement near the 
equator). At this grid spacing, the first baroclinic 
Rossby radius is resolved only near the equator 

(Hallberg 2013). Hewitt et al. (2017) reviewed the 
improvements found in going toward eddy-poor/
eddy-rich regimes (1/4°–1/10°), with important 
consequences for large-scale biases (McClean 
et al. 2011; Delworth et al. 2012; Small et al. 2014a; 
Hewitt et al. 2016), heat uptake (e.g., Griffies et al. 
2015; Kuhlbrodt et al. 2015), and ocean marine 
ecosystems (Saba et al. 2016; McKiver et al. 2015; 
Stock et al. 2011). Coupled simulations with ocean 
resolutions up to 1/16° will enable investigation 
of the impact of eddies on the mean state and 
variability of the coupled system.

4)	 Unstructured meshes: an alternative approach 
to globally uniform increases in resolution is 
offered by a new generation of models for the 
atmosphere, ocean, and sea ice, formulated on 
unstructured meshes (e.g., Danilov 2013; Ringler 
et al. 2013; Zarzycki et al. 2014; Sein et al. 2016). 
Unstructured meshes provide multiresolution 
capacity; that is, they have the f lexibility to 
enhance resolution where required. Several of 
the more mature unstructured mesh models 
[Finite Element Sea Ice–Ocean Model (FESOM; 
Wang et al. 2008, 2014; Danilov et al. 2017) and 
the Model for Prediction Across Scales (MPAS; 
Skamarock et al. 2012; Ringler et al. 2013)] will 
participate in aspects of CMIP6 [specifically the 
Ocean Model Intercomparison Project (OMIP) 
and HighResMIP]. CMIP6 will thus provide an 
excellent opportunity to assess and contrast such 
approaches within a large multimodel framework.

5)	 Improved physica l  pa ra meter izat ions—
particularly those that are designed to work at 
multiple scales (e.g., Arakawa et al. 2016; Fox-
Kemper et al. 2014)—are being developed for 
all components of the climate system, but these 
efforts need resources and skilled people (Jakob 
2014). Such schemes enable seamless modeling 
across space and time scales with less parameter 
tuning, albeit requiring the highest-resolution 
global models for testing their efficacy.

Observational requirements. It is also important to 
exploit global observations that can both assess 
GCMs and explore independent ways to improve 
process representation, including their global telecon-
nections, in these models. An example is provided by 
the National Aeronautics and Space Administration 
(NASA) Gravity Recovery and Climate Experiment 
(GRACE) satellite mission for the global water cycle 
(Böning et al. 2012), which is able to provide simul-
taneous assessment of water storage in different 
components of the climate system. The evolution 
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of high-resolution GCMs represents an important 
and as yet unmet challenge to develop observational 
products at matching resolutions: no observational 
counterparts to the spatially complete and physi-
cally consistent GCMs exist, capable of supporting 
the study of multiscale interactions. Instead, a wide 
range of instruments and methods, each with char-
acteristic strengths and limitations, need to be em-
ployed. A combination of high-resolution modeling 
and observational datasets are key to WCRP’s Global 
Water and Energy Exchanges (GEWEX) project 
focus on improved understanding of the relevant 
geophysical processes of water and energy variability 
and change on regional to local scales.

At global resolutions affordable over the next 
decade, the representation of atmospheric convection 
remains a huge challenge. While it plays a fundamental 
role in the climate system, the poor quality of current 
simulations calls into question all processes dependent 
on it (including all Earth system complexity). This lack 
of simulation skill is also enveloped in many of the 
largest uncertainties in climate projections, such as 
climate sensitivity, in particular due to uncertainties in 
future cloud changes. However, even once model reso-
lutions should become so refined that we may consider 
removing convective parameterization, we would move 
into regimes in which poorly observed and understood 
interactions (multiscale, aerosol–cloud–microphysics 
processes and air–sea and land–atmosphere interac-
tions) will produce similar uncertainties. The number 
of ensemble simulations would also be severely limited, 
owing to the huge computational expense. Hence there 
is no known threshold beyond which we would expect 
simulations to become independent of parameteriza-
tion choices, and therefore we need to continue to 
develop a manifold of global modeling practices, not 
limited to exploiting peak resolution.

SUMMARY. Society requires robust information 
about climate risks over the next few decades in order 
to make good financial decisions about adaptation 
strategies, as well as mitigation decisions.

We have shown that enhanced resolution capabili-
ties in global climate modeling have the potential to

•	 provide improved, globally consistent information 
about climate hazards and impacts, as shown by 
examples pertinent to the global water cycle;

•	 highlight future areas where more investment is 
required [high-performance computing (HPC), 
better algorithms, suitable observations]; and

•	 use a common simulation protocol to enable 
deeper understanding.

Tackling climate model uncertainty (measured 
by variability or range of future projections) from 
different perspectives can potentially reveal limita-
tions in any framework. We are moving forward 
with a suite of complementary efforts, spanning 
uniform grid refinement across the globe in CMIP-
class models, improved dynamical mesh designs 
providing the foundations for cloud-system-resolving 
simulations, and unstructured mesh and stochastic 
approaches. We are implementing these changes at 
the present time, as part of CMIP6, and continued, 
albeit accelerated, evolution should enable our future 
models to be significantly less dependent on still-
unresolved processes, such as convection.

The computational and analysis cost of this new 
generation of simulations, in terms of HPC, stor-
age, network speed, and analysis platform, is clearly 
large. New collaborative paradigms will be needed to 
efficiently address some of these challenges, including 
use of central analysis platforms, incorporating both 
data storage and compute, so that algorithms can 
be moved to the data rather than vice versa. Better 
coordination of experimental design and collabora-
tion can help to form multimodel datasets to amelio-
rate the cost of single model ensemble simulations and 
greatly enhance the scientific understanding from 
community analyses of such datasets, using com-
mon tools. A current example of such good practice 
is CMIP6 HighResMIP.
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APPENDIX: METHODOLOGY TO CHOOSE 
BEST MODEL RESOLUTION. The meth-
odology used to construct Fig. 3 is based on the 
GA3 ensemble of global simulations (Mizielinski 
et al. 2014), with five ensemble members at 25- and 
130-km resolution and three members at 60 km. Four 
observational datasets are used: Tropical Rainfall 
Measuring Mission 3B42 product, version 7 (TRMM; 
Kummerow et al. 1998; Huffman et al. 2007, 2010), 
and Climate Hazards Group Infrared Precipitation 
with Station data (CHIRPS; Funk et al. 2015) over 
50°S–50°N, both at 25-km grid resolution; Global 
Precipitation Climatology Centre (GPCC; Schneider 
et al. 2008), and the Global Precipitation Climatology 
Project (GPCP; Huffman et al. 2009), both globally at 
110 km. All data are initially regridded to a common 
130-km grid. For each region, a histogram of daily 
precipitation is constructed in two ways: a) using 
equally spaced intensity bins and b) using a nonlinear 
distribution of bins following Martin et al. (2017) to 
show the relative importance of precipitation events 
in a given intensity bin to the total precipitation. 
The root-mean-square difference (RMSD) between 
a reference histogram (TRMM in the tropics, GPCP 

in the mid- to high latitudes) and all other datasets 
is calculated across all bins using a logarithmic 
scale, and illustrated in Fig. A1. Figure 3 is then 
determined by using the RMSD for each histogram 
type, to determine the coarsest best-resolution model 
to fit the observations. When using different bins to 
calculate the RMSD produces contradictory results 
or in regions where the observational datasets span 
a wider range than the model resolution differences, 
the “uncertain” category is used.
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