129 research outputs found

    Using Corbino disk sample geometry to separate quasiparticle and vortex motion contributions to the mixed state dissipation of YBCO

    Full text link
    A method, using a Corbino disk sample geometry, is described and applied to study of resistive tails of sintered YBCOYBCO. When the transport current passes radially from the rim of the disk sample to its center, the two component potential drop signal is detected below TcT_c, which is due to (i) quasiparticles WqW_q and (ii) vortex-core-motion related contribution WϕW_{\phi }. When the contact pairs for WW are placed radially, Wq(r)W_q(r) and Wϕ(r)W_{\phi }(r) are found to follow the markedly distinctive functional dependences, providing a unique possibility to deconvolute the relative strengths of both contributions. The results obtained suggest that the mixed state dissipation of high-TcT_c superconductors is strongly influenced by the quasiparticle excitations.Comment: PDF fil

    Probing the field-induced variation of the chemical potential in Bi(2)Sr(2)CaCu(2)O(y) via the magneto-thermopower measurements

    Full text link
    Approximating the shape of the measured in Bi2Sr2CaCu2OyBi_2Sr_2CaCu_2O_y magneto-thermopower (TEP) ΔS(T,H)\Delta S(T,H) by asymmetric linear triangle of the form ΔS(T,H)Sp(H)±B±(H)(TcT)\Delta S(T,H)\simeq S_p(H)\pm B^{\pm}(H)(T_c-T) with positive B(H)B ^{-}(H) and B+(H)B ^{+}(H) defined below and above TcT_c, we observe that B+(H)2B(H)B ^{+}(H)\simeq 2B ^{-}(H). In order to account for this asymmetry, we explicitly introduce the field-dependent chemical potential of holes μ(H)\mu (H) into the Ginzburg-Landau theory and calculate both an average ΔSav(T,H)\Delta S_{av}(T,H) and fluctuation ΔSfl(T,H)\Delta S_{fl}(T,H) contributions to the total magneto-TEP ΔS(T,H)\Delta S(T,H). As a result, we find a rather simple relationship between the field-induced variation of the chemical potential in this material and the above-mentioned magneto-TEP data around TcT_c, viz. Δμ(H)Sp(H)\Delta \mu (H)\propto S_p(H).Comment: REVTEX (epsf), 4 pages, 2 PS figures; to be published in JET

    Estimation of the charge carrier localization length from Gaussian fluctuations in the magneto-thermopower of La_{0.6}Y_{0.1}Ca_{0.3}MnO_3

    Full text link
    The magneto-thermoelectric power (TEP) ΔS(T,H)\Delta S(T,H) of perovskite type manganise oxide La0.6Y0.1Ca0.3MnO3La_{0.6}Y_{0.1}Ca_{0.3}MnO_3 is found to exhibit a sharp peak at some temperature T=170KT^{*}=170K. By approximating the true shape of the measured magneto-TEP in the vicinity of TT^{*} by a linear triangle of the form ΔS(T,H)Sp(H)±B±(H)(TT)\Delta S(T,H)\simeq S_p(H)\pm B^{\pm}(H)(T^{*}-T), we observe that B(H)2B+(H)B ^{-}(H)\simeq 2B ^{+}(H). We adopt the electron localization scenario and introduce a Ginzburg-Landau (GL) type theory which incorporates the two concurrent phase transitions, viz., the paramagnetic-ferromagnetic transition at the Curie point TCT_C and the "metal-insulator" (M-I) transition at TMIT_{MI}. The latter is characterized by the divergence of the field-dependent charge carrier localization length ξ(T,H)\xi (T,H) at some characteristic field H0H_0. Calculating the average and fluctuation contributions to the total magnetization and the transport entropy related magneto-TEP ΔS(T,H)\Delta S(T,H) within the GL theory, we obtain a simple relationship between TT^{*} and the above two critical temperatures (TCT_{C} and TMIT_{MI}). The observed slope ratio B(H)/B+(H)B ^{-}(H)/B ^{+}(H) is found to be governed by the competition between the electron-spin exchange JSJS and the induced magnetic energy MsH0M_sH_0. The comparison of our data with the model predictions produce TC=195KT_{C}=195K, JS=40meVJS=40meV, M0=0.4MsM_0=0.4M_s, ξ0=10A˚\xi_0=10\AA, and ne/ni=2/3n_e/n_i=2/3 for the estimates of the Curie temperature, the exchange coupling constant, the critical magnetization, the localization length, and the free-to-localized carrier number density ratio, respectively.Comment: 6 pages (REVTEX), 2 PS figures (epsf.sty); submitted to Phys.Rev.

    Assessment and Calculation of Groundwater Reserves for Drinking Water Supply in Mountainous Areas of the Chechen Republic

    Get PDF
    This article is devoted to the urgent problem of drinking water supply in the mountainous regions of the Chechen Republic. The results of the assessment and calculation of groundwater reserves are presented. The article gives a brief assessment of the hydrogeological conditions of the study area, especially the complex of alluvial lower-upper Pleistocene sediments of the overdeepened river valleys, represented by boulder-pebble and boulder-rubbly formations with sand and sand-loamy aggregates. For inventory assessment and choice of a methodology of the reserves calculation in the Research Methods section, the hydrogeological conditions for the formation of groundwater are schematized in all the four study areas (Khimoyskiy, Shatoyskiy, Itum-Kalinskiy, Vedenskiy). On the basis of experimental field hydrogeological works, the calculation hydrogeological parameters necessary for the calculation of the groundwater reserves are determined (the main hydrogeological parameters on the estimated areas are given in the article, in the table 1). In the Methods section, the detailed justification of the scheme of placement of project wells is given (further the wells are supposed to be used as a water intake). For all the four areas – Khimoyskiy, Shatoyskiy, Itum-Kalinskiy and Vedenskiy the “strip aquifer” scheme is adopted as the calculation, limited by two parallel impermeable contours (the slopes of river valleys are composed of impermeable water-resistant bedrocks). In the Results section, all schemes, formulas and brief characteristics of each investigated area (the acreage, the necessary water demand, the type of project water intake) are given. For each area, an security assessment of the calculated reserves is given, which is confirmed by the balance method (all the calculations are given in the article). In conclusion of the article in table 03 the data on the reserves of fresh groundwater based on the results of prospecting-evaluation works of 01.06.2015 are given

    High-frequency homogenization for periodic media

    Get PDF
    This article is available open access through the publisher’s website at the link below. Copyright @ 2010 The Royal Society.An asymptotic procedure based upon a two-scale approach is developed for wave propagation in a doubly periodic inhomogeneous medium with a characteristic length scale of microstructure far less than that of the macrostructure. In periodic media, there are frequencies for which standing waves, periodic with the period or double period of the cell, on the microscale emerge. These frequencies do not belong to the low-frequency range of validity covered by the classical homogenization theory, which motivates our use of the term ‘high-frequency homogenization’ when perturbing about these standing waves. The resulting long-wave equations are deduced only explicitly dependent upon the macroscale, with the microscale represented by integral quantities. These equations accurately reproduce the behaviour of the Bloch mode spectrum near the edges of the Brillouin zone, hence yielding an explicit way for homogenizing periodic media in the vicinity of ‘cell resonances’. The similarity of such model equations to high-frequency long wavelength asymptotics, for homogeneous acoustic and elastic waveguides, valid in the vicinities of thickness resonances is emphasized. Several illustrative examples are considered and show the efficacy of the developed techniques.NSERC (Canada) and the EPSRC

    Achilles tendon rupture prevention in physical activity and sports: predisposition factors

    Get PDF
    Objective: to summarize all clinically significant factors determining the Achilles tendon predisposition to rupture.Materials and methods: the basis of this scientific-analytical review was the analysis of data from the electronic portals PubMed-NCBI, Google Academy, and “Scientific electronic e-Library.ru”.Results: the presented literature review indicates that injuries and ruptures of the Achilles tendon can be provoked by numerous factors, among which genetic predisposition, individual anatomico-morphological features of the tendon complex structure, initial connective tissue failure, pathological changes in the Achilles tendon structure itself, foot and ankle deformities are of great importance. Men are more susceptible to this injury. Tendon injuries are most common either in 30–40 years, or in the period from 60 to 80 years. Professional athletes and people who lead sedentary lifestyles and do not exercise properly are at risk of Achilles tendon ruptures. Concomitant metabolic disorders and use of some medications also play an important role in the predisposition to this injury. Local corticosteroid injections pose a particular tendon rupture risk. The combination of several established factors significantly increases the likelihood of this emergency.Conclusions: early detection of predisposition to Achilles tendon rupture will allow timely development of effective measures for its prevention in physical training and sports

    Transverse-momentum-dependent Multiplicities of Charged Hadrons in Muon-Deuteron Deep Inelastic Scattering

    Get PDF
    A semi-inclusive measurement of charged hadron multiplicities in deep inelastic muon scattering off an isoscalar target was performed using data collected by the COMPASS Collaboration at CERN. The following kinematic domain is covered by the data: photon virtuality Q2>1Q^{2}>1 (GeV/cc)2^2, invariant mass of the hadronic system W>5W > 5 GeV/c2c^2, Bjorken scaling variable in the range 0.003<x<0.40.003 < x < 0.4, fraction of the virtual photon energy carried by the hadron in the range 0.2<z<0.80.2 < z < 0.8, square of the hadron transverse momentum with respect to the virtual photon direction in the range 0.02 (GeV/c)2<PhT2<3c)^2 < P_{\rm{hT}}^{2} < 3 (GeV/cc)2^2. The multiplicities are presented as a function of PhT2P_{\rm{hT}}^{2} in three-dimensional bins of xx, Q2Q^2, zz and compared to previous semi-inclusive measurements. We explore the small-PhT2P_{\rm{hT}}^{2} region, i.e. PhT2<1P_{\rm{hT}}^{2} < 1 (GeV/cc)2^2, where hadron transverse momenta are expected to arise from non-perturbative effects, and also the domain of larger PhT2P_{\rm{hT}}^{2}, where contributions from higher-order perturbative QCD are expected to dominate. The multiplicities are fitted using a single-exponential function at small PhT2P_{\rm{hT}}^{2} to study the dependence of the average transverse momentum PhT2\langle P_{\rm{hT}}^{2}\rangle on xx, Q2Q^2 and zz. The power-law behaviour of the multiplicities at large PhT2P_{\rm{hT}}^{2} is investigated using various functional forms. The fits describe the data reasonably well over the full measured range.Comment: 28 pages, 20 figure

    An asymptotic theory for waves guided by diffraction gratings or along microstructured surfaces

    Get PDF
    An effective surface equation, that encapsulates the detail of a microstructure, is developed to model microstructured surfaces. The equations deduced accurately reproduce a key feature of surface wave phenomena, created by periodic geometry, that are commonly called Rayleigh-Bloch waves, but which also go under other names such as Spoof Surface Plasmon Polaritons in photonics. Several illustrative examples are considered and it is shown that the theory extends to similar waves that propagate along gratings. Line source excitation is considered and an implicit long-scale wavelength is identified and compared to full numerical simulations. We also investigate non-periodic situations where a long-scale geometric variation in the structure is introduced and show that localised defect states emerge which the asymptotic theory explains

    Collins and Sivers transverse-spin asymmetries in inclusive muoproduction of ρ0\rho^0 mesons

    Full text link
    The production of vector mesons in deep inelastic scattering is an interesting yet scarsely explored channel to study the transverse spin structure of the nucleon and the related phenomena. The COMPASS collaboration has performed the first measurement of the Collins and Sivers asymmetries for inclusively produced ρ0\rho^0 mesons. The analysis is based on the data set collected in deep inelastic scattering in 20102010 using a 160GeV/c160\,\,\rm{GeV}/c μ+\mu^+ beam impinging on a transversely polarized NH3\rm{NH}_3 target. The ρ0\rho^{0} mesons are selected from oppositely charged hadron pairs, and the asymmetries are extracted as a function of the Bjorken-xx variable, the transverse momentum of the pair and the fraction of the energy zz carried by the pair. Indications for positive Collins and Sivers asymmetries are observed

    Spin Density Matrix Elements in Exclusive ρ0\rho ^0 Meson Muoproduction

    Full text link
    We report on a measurement of Spin Density Matrix Elements (SDMEs) in hard exclusive ρ0\rho ^0 meson muoproduction at COMPASS using 160~GeV/cc polarised μ+ \mu ^{+} and μ \mu ^{-} beams impinging on a liquid hydrogen target. The measurement covers the kinematic range 5.0~GeV/c2c^2 <W<< W < 17.0~GeV/c2c^2, 1.0 (GeV/cc)2^2 <Q2<< Q^2 < 10.0 (GeV/cc)2^2 and 0.01 (GeV/cc)2^2 <pT2<< p_{\rm{T}}^2 < 0.5 (GeV/cc)2^2. Here, WW denotes the mass of the final hadronic system, Q2Q^2 the virtuality of the exchanged photon, and pTp_{\rm{T}} the transverse momentum of the ρ0\rho ^0 meson with respect to the virtual-photon direction. The measured non-zero SDMEs for the transitions of transversely polarised virtual photons to longitudinally polarised vector mesons (γTVL\gamma^*_T \to V^{ }_L) indicate a violation of ss-channel helicity conservation. Additionally, we observe a dominant contribution of natural-parity-exchange transitions and a very small contribution of unnatural-parity-exchange transitions, which is compatible with zero within experimental uncertainties. The results provide important input for modelling Generalised Parton Distributions (GPDs). In particular, they may allow one to evaluate in a model-dependent way the role of parton helicity-flip GPDs in exclusive ρ0\rho ^0 production
    corecore