464 research outputs found

    Fiber-Based Measurement of Bow-Shock Spectra for Reentry Flight Testing

    Get PDF
    We demonstrated a fiber-based approach for obtaining optical spectra of a glowing bow shock in a high-enthalpy air flow. The work was performed in a ground test with the NASA Ames Aerodynamic Heating Facility (AHF) that is used for atmospheric reentry simulation. The method uses a commercial fiber optic that is embedded in the nose of an ablating bluntbody model and provides a line-of-sight view in the streamwise direction - directly upstream into the hot post-shock gas flow. Both phenolic impregnated carbon ablator (PICA) and phenolic carbon (PhenCarb 28) materials were used as thermal protection systems. Results show that the fibers survive the intense heat and operate sufficiently well during the first several seconds of a typical AHF run (20 MJ/kg). This approach allowed the acquisition of optical spectra, enabling a Boltzmann-based electronic excitation temperature measurement from Cu atom impurities (averaged over a line-of-sight through the gas cap, with a 0.04 sec integration time)

    SKI2 mediates degradation of RISC 5'-cleavage fragments and prevents secondary siRNA production from miRNA targets in <i>Arabidopsis</i>

    Get PDF
    Small regulatory RNAs are fundamental in eukaryotic and prokaryotic gene regulation. In plants, an important element of post-transcriptional control is effected by 20–24 nt microRNAs (miRNAs) and short interfering RNAs (siRNAs) bound to the ARGONAUTE1 (AGO1) protein in an RNA induced silencing complex (RISC). AGO1 may cleave target mRNAs with small RNA complementarity, but the fate of the resulting cleavage fragments remains incompletely understood. Here, we show that SKI2, SKI3 and SKI8, subunits of a cytoplasmic cofactor of the RNA exosome, are required for degradation of RISC 5′, but not 3′-cleavage fragments in Arabidopsis. In the absence of SKI2 activity, many miRNA targets produce siRNAs via the RNA-dependent RNA polymerase 6 (RDR6) pathway. These siRNAs are low-abundant, and map close to the cleavage site. In most cases, siRNAs were produced 5′ to the cleavage site, but several examples of 3′-spreading were also identified. These observations suggest that siRNAs do not simply derive from RDR6 action on stable 5′-cleavage fragments and hence that SKI2 has a direct role in limiting secondary siRNA production in addition to its function in mediating degradation of 5′-cleavage fragments

    SKI2 mediates degradation of RISC 5′-cleavage fragments and prevents secondary siRNA production from miRNA targets in Arabidopsis

    Get PDF
    Small regulatory RNAs are fundamental in eukaryotic and prokaryotic gene regulation. In plants, an important element of post-transcriptional control is effected by 20-24 nt microRNAs (miRNAs) and short interfering RNAs (siRNAs) bound to the ARGONAUTE1 (AGO1) protein in an RNA induced silencing complex (RISC). AGO1 may cleave target mRNAs with small RNA complementarity, but the fate of the resulting cleavage fragments remains incompletely understood. Here, we show that SKI2, SKI3 and SKI8, subunits of a cytoplasmic cofactor of the RNA exosome, are required for degradation of RISC 5′, but not 3′-cleavage fragments in Arabidopsis. In the absence of SKI2 activity, many miRNA targets produce siRNAs via the RNA-dependent RNA polymerase 6 (RDR6) pathway. These siRNAs are low-abundant, and map close to the cleavage site. In most cases, siRNAs were produced 5′ to the cleavage site, but several examples of 3′-spreading were also identified. These observations suggest that siRNAs do not simply derive from RDR6 action on stable 5′-cleavage fragments and hence that SKI2 has a direct role in limiting secondary siRNA production in addition to its function in mediating degradation of 5′-cleavage fragment

    The protein kinase TOUSLED facilitates RNAi in Arabidopsis

    Get PDF
    RNA silencing is an evolutionarily conserved mechanism triggered by double-stranded RNA that is processed into 21- to 24-nt small interfering (si)RNA or micro (mi)RNA by RNaseIII-like enzymes called Dicers. Gene regulations by RNA silencing have fundamental implications in a large number of biological processes that include antiviral defense, maintenance of genome integrity and the orchestration of cell fates. Although most generic or core components of the various plant small RNA pathways have been likely identified over the past 15 years, factors involved in RNAi regulation through post-translational modifications are just starting to emerge, mostly through forward genetic studies. A genetic screen designed to identify factors required for RNAi in Arabidopsis identified the serine/threonine protein kinase, TOUSLED (TSL). Mutations in TSL affect exogenous and virus-derived siRNA activity in a manner dependent upon its kinase activity. By contrast, despite their pleiotropic developmental phenotype, tsl mutants show no defect in biogenesis or activity of miRNA or endogenous trans-acting siRNA. These data suggest a possible role for TSL phosphorylation in the specific regulation of exogenous and antiviral RNA silencing in Arabidopsis and identify TSL as an intrinsic regulator of RNA interferenc

    Functional characterization of Arabidopsis ARGONAUTE 3 in reproductive tissues

    Get PDF
    Arabidopsis encodes ten ARGONAUTE (AGO) effectors of RNA silencing, canonically loaded with either 21‐22 nucleotide (nt) long small RNAs (sRNA) to mediate post‐transcriptional‐gene‐silencing (PTGS) or 24nt sRNAs to promote RNA‐directed‐DNA‐methylation. Using full‐locus constructs, we characterized the expression, biochemical properties, and possible modes of action of AGO3. Although AGO3 arose from a recent duplication at the AGO2 locus, their expression patterns differ drastically, with AGO2 being expressed in both male and female gametes whereas AGO3 accumulates in aerial vascular terminations and specifically in chalazal seed integuments. Accordingly, AGO3 down‐regulation alters gene expression in siliques. Similar to AGO2, AGO3 binds sRNAs with a strong 5’‐adenosine bias, but unlike Arabidopsis AGO2, it binds most efficiently 24nt sRNAs. AGO3 immunoprecipitation experiments in siliques revealed that these sRNAs mostly correspond to genes and intergenic regions in a manner reflecting their respective accumulation from their loci‐of‐origin. AGO3 localizes to the cytoplasm and co‐fractionates with polysomes to possibly mediate PTGS via translation inhibition

    Oxygen decreases and variability in the eastern equatorial Pacific

    Get PDF
    Observations indicate increasingly large and strong oxygen minimum zones (OMZs) in the tropical Pacific over recent decades. Here we report on oxygen decreases and variability within the eastern equatorial Pacific OMZ. We construct time series from historical and profiling float oxygen data and analyze data from repeat hydrographic sections at 110°W and 85°50′W. Historical data are quite sparse for constructing oxygen time series, but floats with oxygen sensors prove to be good tools to fill measurement gaps in later parts of these time series. In the region just south of the equator a time series over the last 34 years reveals that oxygen decreases from 200 to 700 m at a rate between 0.50 and 0.83 μmol kg−1 yr−1. This strong decrease seems to be related to changes in the Pacific Decadal Oscillation (PDO). Oscillations on shorter time scales (e.g., an El Niño signal in the upper 350 m) are superimposed upon this trend. In the section data, a general trend of decreasing oxygen is present below the surface layer. While velocity differences appear related to oxygen differences in the equatorial channel, there is less correlation elsewhere. Contrasting with long-term trend computations, the trends derived from two repeat sections are obscured by the influence of seasonal and longer-term variability. Multidecadal variability (e.g., PDO) has the strongest influence on long-term trends, while El Niño, isopycnal heave, current variability, seasonal cycles, and temperature changes are less important. Key points: - Oxygen decrease in the Pacific OMZ over the last 34 years in 200-700 m depth - Trends in oxygen and their relation to variability on different timescales - Relation between oxygen and velocity changes in the equatorial channe

    Open-ocean convection: observations, theory and models

    Get PDF
    We review what is known about the convective process in the open ocean, in which the properties of large volumes of water are changed by intermittent, deep-reaching convection, triggered by winter storms. Observational, laboratory, and modeling studies reveal a fascinating and complex interplay of convective and geostrophic scales, the large-scale circulation of the ocean, and the prevailing meteorology. Two aspects make ocean convection interesting from a theoretical point of view. First, the timescales of the convective process in the ocean are sufficiently long that it may be modified by the Earth's rotation; second, the convective process is localized in space so that vertical buoyancy transfer by upright convection can give way to slantwise transfer by baroclinic instability. Moreover, the convective and geostrophic scales are not very disparate from one another. Detailed observations of the process in the Labrador, Greenland, and Mediterranean Seas are described, which were made possible by new observing technology. When interpreted in terms of underlying dynamics and theory and the context provided by laboratory and numerical experiments of rotating convection, great progress in our description and understanding of the processes at work is being made

    Digital Signal Processing

    Get PDF
    Contains an introduction and reports on seventeen research projects.U.S. Navy - Office of Naval Research (Contract N00014-77-C-0266)Amoco Foundation FellowshipU.S. Navy - Office of Naval Research (Contract N00014-81-K-0742)National Science Foundation (Grant ECS80-07102)U.S. Army Research Office (Contract DAAG29-81-K-0073)Hughes Aircraft Company FellowshipAmerican Edwards Labs. GrantWhitaker Health Sciences FundPfeiffer Foundation GrantSchlumberger-Doll Research Center FellowshipGovernment of Pakistan ScholarshipU.S. Navy - Office of Naval Research (Contract N00014-77-C-0196)National Science Foundation (Grant ECS79-15226)Hertz Foundation Fellowshi
    corecore