3,348 research outputs found

    Demographic estimation methods for plants with dormancy

    Get PDF
    Demographic studies in plants appear simple because unlike animals, plants do not run away. Plant individuals can be marked with, e.g., plastic tags, but often the coordinates of an idividual may be sufficient to identify it. Vascular plants in temperate latitudes have a pronounced seasonal life–cycle, so most plant demographers survey their study plots once a year often during or shortly after flowering. Life–states are pervasive in plants, hence the results of a demographic study for an individual can be summarized in a familiar encounter history, such as 0VFVVF000. A zero means that an individual was not seen in a year and a letter denotes its state for years when it was seen aboveground. V and F here stand for vegetative and flowering states, respectively. Probabilities of survival and state transitions can then be obtained by mere counting. Problems arise when there is an unobservable dormant state, i.e., when plants may stay belowground for one or more growing seasons. Encounter histories such as 0VF00F000 may then occur where the meaning of zeroes becomes ambiguous. A zero can either mean a dead or a dormant plant. Various ad hoc methods in wide use among plant ecologists have made strong assumptions about when a zero should be equated to a dormant individual. These methods have never been compared among each other. In our talk and in Kéry et al. (submitted), we show that these ad hoc estimators provide spurious estimates of survival and should not be used. In contrast, if detection probabilities for aboveground plants are known or can be estimated, capturerecapture(CR) models can be used to estimate probabilities of survival and state–transitions and the fraction of the population that is dormant. We have used this approach in two studies of terrestrial orchids, Cleistes bifaria (Kéry et al., submitted) and Cypripedium reginae (Kéry & Gregg, submitted) in West Virginia, U.S.A. For Cleistes, our data comprised one population with a total of 620 marked ramets over 10 years, and for Cypripedium, two populations with 98 and 258 marked ramets over 11 years. We chose the ramet (= single stem or shoot) as the demographic unit of our study since there was no way distinguishing among genets (genet = genetical individual, i.e., the "individual" that animal ecologists are mostly concerned with). This will introduce some non–independence into the data, which can nevertheless be dealt with easily by correcting variances for overdispersion. Using ramets instead of genets has the further advantage that individuals can be assigned to a state such as flowering or vegetative in an unambiguous manner. This is not possible when genets are the demographic units. In all three populations, auxiliary data was available to show that detection probability of aboveground plants was > 0.995. We fitted multistate models in program MARK by specifying three states (D, V, F), even though the dormant state D does not occur in the encounter histories. Detection probability is fixed at 1 for the vegetative (V) and the flowering state (F) and at zero for the dormant state (D). Rates of survival and of state transitions as well as slopes of covariate relationships can be estimated and LRT or the AIC machinery be used to select among models. To estimate the fraction of the population in the unobservable dormant state, the encounter histories are collapsed to 0 (plant not observed aboveground) and 1 (plant observed aboveground). The Cormack–Jolly–Seber model without constraints on detection probability is used to estimate detection probability, the complement of which is the estimated fraction of the population in the dormant state. Parameter identifiability is an important issue in multi state models. We used the Catchpole–Morgan–Freeman approach to determine which parameters are estimable in principle in our multi state models. Most of 15 tested models were indeed estimable with the notable exception of the most general model, which has fully interactive state- and time-dependent survival and state transition rates. This model would become identifiable if at least some plants would be excavated in years when they do not show up aboveground. Our analyses for three analyzed populations of Cleistes and Cypripedium yielded annual ramet survival rates ranging from 0.86–0.96. Estimates of the average fraction dormant ranged from 0.02–0.30, but with up to half a population in the dormant state in some years. Ultrastructural modeling enables interesting hypotheses to be tested about the relationships of demographic rates with climatic covariates for instance. Such covariate modeling makes the CR approach particularly interesting for evolutionary–ecological questions about, e.g., the adaptive significance of the dormant state. Previous and foreseeable future applications of CR in plant ecology Since the paper by Alexander et al. (1997), it has become increasingly clear that CR models may be useful for demographic analysis of plant populations. In the future, we are likely to see increasing use of these methods that were originally developed for animal populations. Here is a summary about all previous applications that I have come across. I am grateful if readers point out to me any titles that I may have missed. If a reliable way to mark seeds can be devised, CR might indeed provide the analysis tool for tackling one of the ultimate frontiers in plant population ecology: the dynamics of the seed bank. Indeed, the first ever application of CR to plants that I have come across (Naylor, 1972) used a fluorescent dye to mark seeds and a Lincoln–Peterson–type estimator to estimate the seed bank size in an agricultural weed. The application of CR to plants with dormancy has been treated by hefferson et al. (2001, 2003), Kéry et al. (submitted) and Kéry & Gregg (submitted). Population size, and survival rates of plants whose aboveground states are easily overlooked have been estimated for an elusive prairie plant (Alexander et al., 1997; Slade et al., 2003) and for a tropical savannah tree (Lahoreau et al., 2003). For plot–based plant demographic studies, we have shown previously that (not surprisingly) different life–states may have different detection probabilities, and that this may seriously bias inference from population modelling (Kéry & Gregg, 2003). It is somewhat astonishing that there still appear to be no applications of CR to the analysis of plant populations and communities. For instance, species richness, patch occupancy, population extinction rates, and species turnover in communities are all still based on adding up the raw data, even though the animal literature has plenty of papers showing more adequate ways of estimating these quantities (e.g., Boulinier et al., 1998; Nichols et al., 1998). I have submitted a note (Kéry, submitted) describing the use of the Cormack–Jolly–Seber model to estimate extinction probabilities for plant populations in a manner exactly analogous to patch occupancy models (MacKenzie et al., 2002, 2003). It is perhaps in plant community ecology where we will see most future applications of CR

    Ultra-compact dwarf galaxies: a new class of compact stellar system discovered in the Fornax Cluster

    Get PDF
    We have used the 2dF spectrograph on the Anglo-Australian Telescope to obtain a complete spectroscopic sample of all objects in the magnitude range, Bj= 16.5 to 19.8, regardless of morphology, in an area centred on the Fornax Cluster of galaxies. Among the unresolved targets are five objects which are members of the Fornax Cluster. They are extremely compact stellar systems with scale lengths less than 40 parsecs. These ultra-compact dwarfs are unlike any known type of stellar system, being more compact and significantly less luminous than other compact dwarf galaxies, yet much brighter than any globular cluster.Comment: To appear in IAU Symposium 207: Extragalactic Star Cluster

    Acquired hypogammaglobulinemia in HIV ‐positive subjects after liver transplantation

    Full text link
    Introduction As more solid organ transplantations are performed in patients infected with human immunodeficiency virus ( HIV ), post‐transplant complications in this population are becoming better defined. Methods Using serum samples from the Solid Organ Transplantation in HIV : Multi‐Site Study, we studied the epidemiology of acquired hypogammaglobulinemia ( HGG ) after liver transplantation ( LT ) in 79 HIV ‐infected individuals with a median CD 4 count at enrollment of 288 (interquartile range 200–423) cells/μL. Quantitative immunoglobulin G (IgG) levels before and after LT were measured, with moderate and severe HGG defined as IgG 350–500 mg/dL and <350 mg/dL, respectively. Incidence, risk factors, and associated outcomes of moderate or worse HGG were evaluated using K aplan– M eier estimator and proportional hazards ( PH ) models. Results The 1‐year cumulative incidence of moderate or worse HGG was 12% (95% confidence interval [ CI ]: 6–22%); no new cases were observed between years 1 and 2. In a multivariate PH model, higher pre‐transplant model for end‐stage liver disease score ( P  = 0.04) and treated acute rejection ( P  = 0.04) were both identified as significant predictors of moderate or worse HGG . There was a strong association of IgG levels <500 mg/dL with non‐opportunistic serious infection (hazard ratio [95% CI ]: 3.5 [1.1–10.6]; P  = 0.03) and mortality (3.2 [1.1–9.4]; P  = 0.04). These associations held after adjustment for important determinants of infection and survival among the entire cohort. Conclusion These results suggest that a proportion of HIV ‐positive LT recipients will develop clinically significant HGG after transplantation.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/102205/1/tid12139.pd

    Principles And Practices Fostering Inclusive Excellence: Lessons From The Howard Hughes Medical Institute’s Capstone Institutions

    Get PDF
    Best-practices pedagogy in science, technology, engineering, and mathematics (STEM) aims for inclusive excellence that fosters student persistence. This paper describes principles of inclusivity across 11 primarily undergraduate institutions designated as Capstone Awardees in Howard Hughes Medical Institute’s (HHMI) 2012 competition. The Capstones represent a range of institutional missions, student profiles, and geographical locations. Each successfully directed activities toward persistence of STEM students, especially those from traditionally underrepresented groups, through a set of common elements: mentoring programs to build community; research experiences to strengthen scientific skill/identity; attention to quantitative skills; and outreach/bridge programs to broaden the student pool. This paper grounds these program elements in learning theory, emphasizing their essential principles with examples of how they were implemented within institutional contexts. We also describe common assessment approaches that in many cases informed programming and created traction for stakeholder buy-in. The lessons learned from our shared experiences in pursuit of inclusive excellence, including the resources housed on our companion website, can inform others’ efforts to increase access to and persistence in STEM in higher education

    Implications of Dramatic Broad Absorption Line Variability in the Quasar FBQS J1408+3054

    Full text link
    We have observed a dramatic change in the spectrum of the formerly heavily absorbed `overlapping-trough' iron low-ionization broad absorption line (FeLoBAL) quasar FBQS J1408+3054. Over a time span of between 0.6 to 5 rest-frame years, the Mg II trough outflowing at 12,000 km/s decreased in equivalent width by a factor of two and the Fe II troughs at the same velocity disappeared. The most likely explanation for the variability is that a structure in the BAL outflow moved out of our line of sight to the ultraviolet continuum emitting region of the quasar's accretion disk. Given the size of that region, this structure must have a transverse velocity of between 2600 km/s and 22,000 km/s. In the context of a simple outflow model, we show that this BAL structure is located between approximately 5800 and 46,000 Schwarzschild radii from the black hole. That distance corresponds to 1.7 to 14 pc, 11 to 88 times farther from the black hole than the H-beta broad-line region. The high velocities and the parsec-scale distance for at least this one FeLoBAL outflow mean that not all FeLoBAL outflows can be associated with galaxy-scale outflows in ultraluminous infrared galaxies transitioning to unobscured quasars. The change of FBQS J1408+3054 from an FeLoBAL to a LoBAL quasar also means that if (some) FeLoBAL quasars have multiwavelength properties which distinguish them from HiBAL quasars, then some LoBAL quasars will share those properties. Finally, we extend previous work on how multiple-epoch spectroscopy of BAL and non-BAL quasars can be used to constrain the average lifetime of BAL episodes (currently >60 rest-frame years at 90% confidence).Comment: Final version to appear in MNRAS: references added and factor of 2 underestimate of accretion disk size corrected, resulting in absorber constrained to be somewhat closer to the black hole. For an animated gif showing the spectral evolution of the broad absorption line troughs in this quasar, see http://www.yorku.ca/phall/film19952009.gi

    Demand driven salt clean-up in a molten salt fast reactor – Defining a priority list

    Get PDF
    <div><p>The PUREX technology based on aqueous processes is currently the leading reprocessing technology in nuclear energy systems. It seems to be the most developed and established process for light water reactor fuel and the use of solid fuel. However, demand driven development of the nuclear system opens the way to liquid fuelled reactors, and disruptive technology development through the application of an integrated fuel cycle with a direct link to reactor operation. The possibilities of this new concept for innovative reprocessing technology development are analysed, the boundary conditions are discussed, and the economic as well as the neutron physical optimization parameters of the process are elucidated. Reactor physical knowledge of the influence of different elements on the neutron economy of the reactor is required. Using an innovative study approach, an element priority list for the salt clean-up is developed, which indicates that separation of Neodymium and Caesium is desirable, as they contribute almost 50% to the loss of criticality. Separating Zirconium and Samarium in addition from the fuel salt would remove nearly 80% of the loss of criticality due to fission products. The theoretical study is followed by a qualitative discussion of the different, demand driven optimization strategies which could satisfy the conflicting interests of sustainable reactor operation, efficient chemical processing for the salt clean-up, and the related economic as well as chemical engineering consequences. A new, innovative approach of balancing the throughput through salt processing based on a low number of separation process steps is developed. Next steps for the development of an economically viable salt clean-up process are identified.</p></div

    Resistivity due to a Domain Wall in Ferromagnetic Metal

    Full text link
    The resistivity due to a domain wall in ferromagnetic metallic wire is calculated based on the linear response theory. The interaction between conduction electrons and the wall is expressed in terms of a classical gauge field which is introduced by the local gauge transformation in the electron spin space. It is shown that the wall contributes to the decoherence of electrons and that this quantum correction can dominate over the Boltzmann resisitivity, leading to a decrease of resisitivity by nucleation of a wall. The conductance fluctuation due to the motion of the wall is also investigated. The results are compared with recent experiments.Comment: 9 pages, 3 figure

    Adsorption in non interconnected pores open at one or at both ends: A reconsideration of the origin of the hysteresis phenomenon

    Get PDF
    We report on an experimental study of adsorption isotherme of nitrogen onto porous silicon with non interconnected pores open at one or at both ends in order to check for the first time the old (1938) but always current idea based on Cohan's description which suggests that the adsorption of gaz should occur reversibly in the first case and irreversibly in the second one. Hysteresis loops, the shape of which is usually associated to interconnections in porous media, are observed whether the pores are open at one or at both ends in contradiction with Cohan's model.Comment: 5 pages, 4 EPS figure
    corecore