209 research outputs found

    Drug-induced acute kidney injury in children

    Get PDF
    Acute kidney injury (AKI) is a serious problem occurring in anywhere between 8 and 30% of children in the intensive care unit. Up to 25% of these cases are believed to be the result of pharmacotherapy. In this review we have focused on several relevant drugs and/or drug classes, which are known to cause AKI in children, including cancer chemotherapeutics, non-steroidal anti-inflammatory drugs and antimicrobials. AKI demonstrates a steady association with increased long term risk of poor outcomes including chronic kidney disease and death as determined by the extent of injury. For this reason it is important to understand the causality and implications of these drugs and drug classes. Children occupy a unique patient population, advocating the importance of understanding how they are affected dissimilarly compared with adults. While the kidney itself is likely more susceptible to injury than other organs, the inherent toxicity of these drugs also plays a major role in the resulting AKI. Mechanisms involved in the toxicity of these drugs include oxidative damage, hypersensitivity reactions, altered haemodynamics and tubule obstruction and may affect the glomerulus and/or the tubules. Understanding these mechanisms is critical in determining the most effective strategies for treatment and/or prevention, whether these strategies are less toxic versions of the same drugs or add-on agents to mitigate the toxic effect of the existing therapy

    Wind Tunnel Comparison of Flapped and FishBAC Camber Variation for Lift Control

    Get PDF

    Automatic focus algorithms for TDI X-Ray image reconstruction

    Get PDF
    In food industry, most products are checked by X-rays for contaminations. These X-ray machines continuously scan the product passing through. To minimize the required X-ray power, a Time, Delay and Integration (TDI) CCD-sensor is used to capture the image. While the product moves across the sensor area, the X-ray angle changes during the pass. As a countermeasure, adjusting the sensor shift speed on a single focal plane of the product can be selected. However, the changing angle result in a blurred image in dependance to the thickness of the product. This so-called ''laminographic effect'' can be compensated individually for one plane by inverse filtering. As the plane of contamination is unknown, the blurred image will be inversely filtered for different planes, but only one of these images shows the correctly focussed object. If the correct image can be found, the plane containing the contamination is identified. In this contribution we demonstrate how the correctly focussed images can be found by analyzing the images of all planes. Different characteristics for correctly and incorrectly focussed planes like sharpness, number of objects and edges are investigated by using image processing algorithms

    Unconventional computing using evolution-in-nanomaterio: neural networks meet nanoparticle networks

    Get PDF
    Recently published experimental work on evolution-in-materio applied to nanoscale materials shows promising results for future reconfigurable devices. These experiments were performed on disordered nano-particle networks that have no predefined design. The material has been treated as a blackbox, and genetic algorithms have been used to find appropriate configuration voltages to enable the target functionality. In order to support future experiments, we developed simulation tools for predicting candidate functionalities. One of these tools is based on a physical model, but the one we introduce in this paper is based on an artificial neural network. The advantage of this newly presented approach is that, after training the neural network to match either the real material or its physical model, it can be configured using gradient descent instead of a black-box optimisation. The experiments we report here demonstrate that the neural network can model the simulated nano-material quite accurately. The differentiable, neural network-based material model is then used to find logic gates, as a proof of principle. This shows that the new approach has great potential for partly replacing costly and time-consuming experiments with the real materials. Therefore, this approach has a high relevance for future computing, either as an alternative to digital computing or as an alternative way of producing multi-functional reconfigurable devices

    Constraining Ceres' interior from its Rotational Motion

    Get PDF
    Context. Ceres is the most massive body of the asteroid belt and contains about 25 wt.% (weight percent) of water. Understanding its thermal evolution and assessing its current state are major goals of the Dawn Mission. Constraints on internal structure can be inferred from various observations. Especially, detailed knowledge of the rotational motion can help constrain the mass distribution inside the body, which in turn can lead to information on its geophysical history. Aims. We investigate the signature of the interior on the rotational motion of Ceres and discuss possible future measurements performed by the spacecraft Dawn that will help to constrain Ceres' internal structure. Methods. We compute the polar motion, precession-nutation, and length-of-day variations. We estimate the amplitudes of the rigid and non-rigid response for these various motions for models of Ceres interior constrained by recent shape data and surface properties. Results. As a general result, the amplitudes of oscillations in the rotation appear to be small, and their determination from spaceborne techniques will be challenging. For example, the amplitudes of the semi-annual and annual nutations are around ~364 and ~140 milli-arcseconds, and they show little variation within the parametric space of interior models envisioned for Ceres. This, combined with the very long-period of the precession motion, requires very precise measurements. We also estimate the timescale for Ceres' orientation to relax to a generalized Cassini State, and we find that the tidal dissipation within that object was probably too small to drive any significant damping of its obliquity since formation. However, combining the shape and gravity observations by Dawn offers the prospect to identify departures of non-hydrostaticity at the global and regional scale, which will be instrumental in constraining Ceres' past and current thermal state. We also discuss the existence of a possible Chandler mode in the rotational motion of Ceres, whose potential excitation by endogenic and/or exogenic processes may help detect the presence of liquid reservoirs within the asteroid.Comment: submitted to Astronomy and Astrophysic

    MIA-Prognosis: A Deep Learning Framework to Predict Therapy Response

    Full text link
    Predicting clinical outcome is remarkably important but challenging. Research efforts have been paid on seeking significant biomarkers associated with the therapy response or/and patient survival. However, these biomarkers are generally costly and invasive, and possibly dissatifactory for novel therapy. On the other hand, multi-modal, heterogeneous, unaligned temporal data is continuously generated in clinical practice. This paper aims at a unified deep learning approach to predict patient prognosis and therapy response, with easily accessible data, e.g., radiographics, laboratory and clinical information. Prior arts focus on modeling single data modality, or ignore the temporal changes. Importantly, the clinical time series is asynchronous in practice, i.e., recorded with irregular intervals. In this study, we formalize the prognosis modeling as a multi-modal asynchronous time series classification task, and propose a MIA-Prognosis framework with Measurement, Intervention and Assessment (MIA) information to predict therapy response, where a Simple Temporal Attention (SimTA) module is developed to process the asynchronous time series. Experiments on synthetic dataset validate the superiory of SimTA over standard RNN-based approaches. Furthermore, we experiment the proposed method on an in-house, retrospective dataset of real-world non-small cell lung cancer patients under anti-PD-1 immunotherapy. The proposed method achieves promising performance on predicting the immunotherapy response. Notably, our predictive model could further stratify low-risk and high-risk patients in terms of long-term survival.Comment: MICCAI 2020 (Early Accepted; Student Travel Award

    Assessing the importance and expression of the 6-year geomagnetic oscillation

    Get PDF
    The first time derivative of residual length-of-day observations is known to contain a distinctive 6 year periodic oscillation. Here we theorize that through the flow accelerations at the top of the core the same periodicity should arise in the geomagnetic secular acceleration. We use the secular acceleration of the CHAOS-3 and CM4 geomagnetic field models to recover frequency spectra through both a traditional Fourier analysis and an empirical mode decomposition. We identify the 6 year periodic signal in the geomagnetic secular acceleration and characterize its spatial behavior. This signal seems to be closely related to recent geomagnetic jerks. We also identify a 2.5 year periodic signal in CHAOS-3 with unknown origin. This signal is strictly axially dipolar and is absent from other magnetic or geodetic time series

    Working with argan cake: a new etiology for hypersensitivity pneumonitis

    No full text
    International audienceAbstractBackgroundArgan is now used worldwide in numerous cosmetic products. Nine workers from a cosmetic factory were examined in our occupational medicine department, following the diagnosis of a case of hypersensitivity pneumonitis (HP) related to handling of argan cakes.MethodsOperators were exposed to three forms of argan (crude granulates, powder or liquid) depending on the step of the process. All workers systematically completed standardized questionnaires on occupational and medical history, followed by medical investigations, comprising, in particular, physical examination and chest X-rays, total IgE and a systematic screening for specific serum antibodies directed against the usual microbial agents of domestic and farmer’s HP and antigens derived from microbiological culture and extracts of various argan products. Subjects with episodes of flu-like syndrome several hours after handling argan cakes, were submitted to a one-hour challenge to argan cakes followed by physical examination, determination of Carbon Monoxide Diffusing Capacity (DLCO) and chest CT-scan on day 2, and, when necessary, bronchoalveolar lavage on day 4.ResultsSix of the nine workers experienced flu-like symptoms within 8 hours after argan handling. After challenge, two subjects presented a significant decrease of DLCO and alveolitis with mild lymphocytosis, and one presented ground glass opacities. These two patients and another patient presented significant arcs to both granulates and non-sterile powder. No reactivity was observed to sterile argan finished product, antigens derived from argan cultures (various species of Bacillus) and Streptomyces marokkonensis (reported in the literature to contaminate argan roots).ConclusionsWe report the first evidence of hypersensitivity pneumonitis related to argan powder in two patients. This implies preventive measures to reduce their exposure and clinical survey to diagnose early symptoms. As exposure routes are different and antibodies were observed against argan powder and not the sterile form, consumers using argan-based cosmetics should not be concerned
    • …
    corecore