1,510 research outputs found

    One-loop Correction and the Dilaton Runaway Problem

    Get PDF
    We examine the one-loop vacuum structure of an effective theory of gaugino condensation coupled to the dilaton for string models in which the gauge coupling constant does not receive string threshold corrections. The new ingredients in our treatment are that we take into account the one-loop correction to the dilaton K\"ahler potential and we use a formulation which includes a chiral field HH corresponding to the gaugino bilinear. We find through explicit calculation that supersymmetry in the Yang-Mills sector is broken by gaugino condensation. The dilaton and HH field have masses on the order of the gaugino condensation scale independently of the dilaton VEV. Although the calculation performed here is at best a model of the full gaugino condensation dynamics, the result shows that the one-loop correction to the dilaton K\"ahler potential as well as the detailed dynamics at the gaugino condensation scale may play an important role in solving the dilaton runaway problem.Comment: 19 page

    Non-Abelian Born-Infeld Action and Type I - Heterotic Duality (II): Nonrenormalization Theorems

    Get PDF
    Type I - heterotic duality in D=10 predicts various relations and constraints on higher order F^n couplings at different string loop levels on both sides. We prove the vanishing of two-loop corrections to the heterotic F^4 terms, which is one of the basic predictions from this duality. Furthermore, we show that the heterotic F^5 and (CP even) F^6 couplings are not renormalized at one loop. These results strengthen the conjecture that in D=10 any Tr F^(2n) coupling appears only at the disc tree-level on type I side and at (n-1)-loop level on the heterotic side. Our non-renormalization theorems are valid in any heterotic string vacuum with sixteen supercharges.Comment: 35 pages, harvmac; cosmetic changes; final version to appear in NP

    Direct Production of Lightest Regge Resonances

    Full text link
    We discuss direct production of Regge excitations in the collisions of massless four-dimensional superstring states, focusing on the first excited level of open strings ending on D-branes extending into higher dimensions. We construct covariant vertex operators and identify ``universal'' Regge states with the internal parts either trivial or determined by the world-sheet SCFT describing superstrings propagating on an arbitrary Calabi-Yau manifold. We evaluate the amplitudes involving one such massive state and up to three massless ones and express them in the helicity basis. The most important phenomenological applications of our results are in the context of low-mass string (and large extra dimensions) scenarios in which excited string states are expected to be produced at the LHC as soon as the string mass threshold is reached in the center-of-mass energies of the colliding partons. In order to facilitate the use of partonic cross sections, we evaluate them and tabulate for all production processes: gluon fusion, quark absorbing a gluon, quark-antiquark annihilation and quark-quark scattering.Comment: 43 pages, RevTeX 4.

    Study of the three-dimensional shape and dynamics of coronal loops observed by Hinode/EIS

    Get PDF
    We study plasma flows along selected coronal loops in NOAA Active Region 10926, observed on 3 December 2006 with Hinode's EUV Imaging Spectrograph (EIS). From the shape of the loops traced on intensity images and the Doppler shifts measured along their length we compute their three-dimensional (3D) shape and plasma flow velocity using a simple geometrical model. This calculation was performed for loops visible in the Fe VIII 185 Ang., Fe X 184 Ang., Fe XII 195 Ang., Fe XIII 202 Ang., and Fe XV 284 Ang. spectral lines. In most cases the flow is unidirectional from one footpoint to the other but there are also cases of draining motions from the top of the loops to their footpoints. Our results indicate that the same loop may show different flow patterns when observed in different spectral lines, suggesting a dynamically complex rather than a monolithic structure. We have also carried out magnetic extrapolations in the linear force-free field approximation using SOHO/MDI magnetograms, aiming toward a first-order identification of extrapolated magnetic field lines corresponding to the reconstructed loops. In all cases, the best-fit extrapolated lines exhibit left-handed twist (alpha < 0), in agreement with the dominant twist of the region.Comment: 17 pages, 6 figure

    Axion Couplings and Effective Cut-Offs in Superstring Compactifications

    Full text link
    We use the linear supermultiplet formalism of supergravity to study axion couplings and chiral anomalies in the context of field-theoretical Lagrangians describing orbifold compactifications beyond the classical approximation. By matching amplitudes computed in the effective low energy theory with the results of string loop calculations we determine the appropriate counterterm in this effective theory that assures modular invariance to all loop order. We use supersymmetry consistency constraints to identify the correct ultra-violet cut-offs for the effective low energy theory. Our results have a simple interpretation in terms of two-loop unification of gauge coupling constants at the string scale.Comment: 25 page

    Lectures on Heterotic-Type I Duality

    Get PDF
    We present a review of heterotic-type I string duality. In particular, we discuss the effective field theory of six- and four-dimensional compactifications with N>1 supersymmetries. We then describe various duality tests by comparing gauge couplings, N=2 prepotentials, as well as higher-derivative F-terms. Based on invited lectures delivered at: 33rd Karpacz Winter School of Theoretical Physics ``Duality, Strings and Fields,'' Przesieka, Poland, 13 - 22 February 1997; Trieste Conference on Duality Symmetries in String Theory, Trieste, Italy, 1 - 4 April 1997; Cargese Summer School ``Strings, Branes and Dualities,'' Cargese, France, 26 May - 14 June 1997.Comment: 14 pages, LaTeX, espcrc2.st

    A microbubble-sparged yeast propagation–fermentation process for bioethanol production

    Get PDF
    Background Industrial biotechnology will play an increasing role in creating a more sustainable global economy. For conventional aerobic bioprocesses supplying O2 can account for 15% of total production costs. Microbubbles (MBs) are micron-sized bubbles that are widely used in industry and medical imaging. Using a fluidic oscillator to generate energy-efficient MBs has the potential to decrease the costs associated with aeration. However, little is understood about the effect of MBs on microbial physiology. To address this gap, a laboratory-scale MB-based Saccharomyces cerevisiae Ethanol Red propagation–fermentation bioethanol process was developed and analysed. Results Aeration with MBs increased O2 transfer to the propagation cultures. Titres and yields of bioethanol in subsequent anaerobic fermentations were comparable for MB-propagated and conventional, regular bubble (RB)-propagated yeast. However, transcript profiling showed significant changes in gene expression in the MB-propagated yeast compared to those propagated using RB. These changes included up-regulation of genes required for ergosterol biosynthesis. Ergosterol contributes to ethanol tolerance, and so the performance of MB-propagated yeast in fed-batch fermentations sparged with 1% O2 as either RBs or MBs were tested. The MB-sparged yeast retained higher levels of ergosteryl esters during the fermentation phase, but this did not result in enhanced viability or ethanol production compared to ungassed or RB-sparged fermentations. Conclusions The performance of yeast propagated using energy-efficient MB technology in bioethanol fermentations is comparable to that of those propagated conventionally. This should underpin the future development of MB-based commercial yeast propagation

    Fast evaluation of appointment schedules for outpatients in health care

    Get PDF
    We consider the problem of evaluating an appointment schedule for outpatients in a hospital. Given a fixed-length session during which a physician sees K patients, each patient has to be given an appointment time during this session in advance. When a patient arrives on its appointment, the consultations of the previous patients are either already finished or are still going on, which respectively means that the physician has been standing idle or that the patient has to wait, both of which are undesirable. Optimising a schedule according to performance criteria such as patient waiting times, physician idle times, session overtime, etc. usually requires a heuristic search method involving a huge number of repeated schedule evaluations. Hence, the aim of our evaluation approach is to obtain accurate predictions as fast as possible, i.e. at a very low computational cost. This is achieved by (1) using Lindley's recursion to allow for explicit expressions and (2) choosing a discrete-time (slotted) setting to make those expression easy to compute. We assume general, possibly distinct, distributions for the patient's consultation times, which allows us to account for multiple treatment types, as well as patient no-shows. The moments of waiting and idle times are obtained. For each slot, we also calculate the moments of waiting and idle time of an additional patient, should it be appointed to that slot. As we demonstrate, a graphical representation of these quantities can be used to assist a sequential scheduling strategy, as often used in practice

    A pulsating white dwarf in an eclipsing binary

    Get PDF
    White dwarfs are the burnt-out cores of Sun-like stars and are the fate of 97 per cent of the stars in our Galaxy. The internal structure and composition of white dwarfs are hidden by their high gravities, which causes all elements apart from the lightest ones to settle out of their atmospheres. The most direct method of probing the inner structure of stars and white dwarfs in detail is via asteroseismology. Here we present a pulsating white dwarf in an eclipsing binary system, enabling us to place extremely precise constraints on the mass and radius of the white dwarf from the lightcurve, independent of the pulsations. This 0.325-solar-mass white dwarf—one member of the SDSS J115219.99+024814.4 system—will serve as a powerful benchmark with which to constrain empirically the core composition of low-mass stellar remnants and to investigate the effects of close binary evolution on the internal structure of white dwarfs
    • …
    corecore