224 research outputs found

    Material Modelling of Short Fiber Reinforced Thermoplastic for the FEA of a Clinching Test

    Get PDF
    In modern car body construction, multi-material and hybrid design is used, whereby short fibre reinforced plastics combined with light metals represent an interesting class of work-piece materials. In order to realize modern hybrid construction, suitable joining techniques are therefore required. Clinching represents a cost-effective and easy to implement joining method. In this paper the material modelling of the short fibre reinforced thermoplastic sheets considering the fibre orientation tensor for the FEA of the clinching process is presented

    A spherical perfect lens

    Full text link
    It has been recently proved that a slab of negative refractive index material acts as a perfect lens in that it makes accessible the sub-wavelength image information contained in the evanescent modes of a source. Here we elaborate on perfect lens solutions to spherical shells of negative refractive material where magnification of the near-field images becomes possible. The negative refractive materials then need to be spatially dispersive with ϵ(r)1/r\epsilon(r) \sim 1/r and μ(r)1/r\mu(r)\sim 1/r. We concentrate on lens-like solutions for the extreme near-field limit. Then the conditions for the TM and TE polarized modes become independent of μ\mu and ϵ\epsilon respectively.Comment: Revtex4, 9 pages, 2 figures (eps

    Optimal FIR subband beamforming for speech enhancement in multipath environments

    Full text link

    Temperature range of superconducting fluctuations above T_c in YBa_2Cu_3O_{7-\delta} single crystals

    Get PDF
    Microwave absorption measurements in magnetic fields from zero up to 16 T were used to determine the temperature range of superconducting fluctuations above the superconducting critical temperature T_c in YBa_2Cu_3O_{7-\delta}. Measurements were performed on deeply underdoped, slightly underdoped, and overdoped single crystals. The temperature range of the superconducting fluctuations above T_c is determined by an experimental method which is free from arbitrary assumptions about subtracting the nonsuperconducting contributions to the total measured signal, and/or theoretical models to extract the unknown parameters. The superconducting fluctuations are detected in the ab-plane, and c-axis conductivity, by identifying the onset temperature T'. Within the sensitivity of the method, this fluctuation regime is found only within a fairly narrow region above T_c. Its width increases from 7 K in the overdoped sample (T_c = 89 K), to at most 23 K in the deeply underdoped sample (T_c = 57 K), so that T' falls well below the pseudogap temperature T*. Implications of these findings are discussed in the context of other experimental probes of superconducting fluctuations in the cuprates

    A new design method for broadband microphone arrays for speech input in automobiles

    Full text link

    Reciprocal responses in the interaction between Arabidopsis and the cell-content feeding chelicerate herbivore spider mite

    Get PDF
    Most molecular-genetic studies of plant defense responses to arthropod herbivores have focused on insects. However, plant-feeding mites are also pests of diverse plants, and mites induce different patterns of damage to plant tissues than do well-studied insects (e.g. lepidopteran larvae or aphids). The two-spotted spidermite (Tetranychus urticae) is among the most significant mite pests in agriculture, feeding on a staggering number of plant hosts. To understand the interactions between spider mite and a plant at the molecular level, we examined reciprocal genome-wide responses of mites and its host Arabidopsis (Arabidopsis thaliana). Despite differences in feeding guilds, we found that transcriptional responses of Arabidopsis to mite herbivory resembled those observed for lepidopteran herbivores. Mutant analysis of induced plant defense pathways showed functionally that only a subset of induced programs, including jasmonic acid signaling and biosynthesis of indole glucosinolates, are central to Arabidopsis's defense to mite herbivory. On the herbivore side, indole glucosinolates dramatically increased mite mortality and development times. We identified an indole glucosinolate dose-dependent increase in the number of differentially expressedmite genes belonging to pathways associated with detoxification of xenobiotics. This demonstrates that spider mite is sensitive to Arabidopsis defenses that have also been associated with the deterrence of insect herbivores that are very distantly related to chelicerates. Our findings provide molecular insights into the nature of, and response to, herbivory for a representative of a major class of arthropod herbivores

    Near-field examination of perovskite-based superlenses and superlens-enhanced probe-object coupling

    Get PDF
    A planar slab of negative index material works as a superlens with sub-diffraction-limited imaging resolution, since propagating waves are focused and, moreover, evanescent waves are reconstructed in the image plane. Here, we demonstrate a superlens for electric evanescent fields with low losses using perovskites in the mid-infrared regime. The combination of near-field microscopy with a tunable free-electron laser allows us to address precisely the polariton modes, which are critical for super-resolution imaging. We spectrally study the lateral and vertical distributions of evanescent waves around the image plane of such a lens, and achieve imaging resolution of wavelength/14 at the superlensing wavelength. Interestingly, at certain distances between the probe and sample surface, we observe a maximum of these evanescent fields. Comparisons with numerical simulations indicate that this maximum originates from an enhanced coupling between probe and object, which might be applicable for multifunctional circuits, infrared spectroscopy, and thermal sensors.Comment: 20 pages, 6 figures, published as open access article in Nature Communications (see http://www.nature.com/ncomms/

    Design of oversampled generalised discrete Fourier transform filter banks for application to subband-based blind source separation

    Get PDF
    A novel design of oversampled generalised discrete Fourier transform filter banks is proposed, with application to subband-based convolutive blind source separation (BSS), where either instantaneous BSS algorithms or joint BSS algorithms can be applied. Conventional filter banks design is usually focused on elimination of the overall aliasing error and the perfect reconstruction (PR) condition, which are required by traditional subband adaptive filtering applications. However, because of the unknown scaling factor, the traditional PR condition is not necessary in the context of subband BSS and can be relaxed in the design. Owing to the increased degrees of design freedom, the authors can introduce an additional cost function to enhance the mutual information between adjacent subband signals. Together with a reduced subband aliasing level, it leads to an improved subband permutation alignment result for instantaneous BSS and an overall better performance for the joint BSS

    Metamaterials proposed as perfect magnetoelectrics

    Full text link
    Magnetoelectric susceptibility of a metamaterial built from split ring resonators have been investigated both experimentally and within an equivalent circuit model. The absolute values have been shown to exceed by two orders of magnitude that of classical magnetoelectric materials. The metamaterial investigated reaches the theoretically predicted value of the magnetoelectric susceptibility which is equal to the geometric average of the electric and magnetic susceptibilities.Comment: 5 pages, 3 figure

    Electromagnetic-field quantization and spontaneous decay in left-handed media

    Full text link
    We present a quantization scheme for the electromagnetic field interacting with atomic systems in the presence of dispersing and absorbing magnetodielectric media, including left-handed material having negative real part of the refractive index. The theory is applied to the spontaneous decay of a two-level atom at the center of a spherical free-space cavity surrounded by magnetodielectric matter of overlapping band-gap zones. Results for both big and small cavities are presented, and the problem of local-field corrections within the real-cavity model is addressed.Comment: 15 pages, 5 figures, RevTe
    corecore