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Abstract. A novel design of oversampled generalised discrete Fouriertransform (GDFT) filter banks

is proposed, with application to subband-based convolutive blind source separation (BSS), where ei-

ther instantaneous BSS algorithms or joint BSS algorithms can be applied. Conventional filter banks

design is usually focused on elimination of the overall aliasing error and the perfect reconstruction

(PR) condition, which are required by traditional subband adaptive filtering applications. However,

due to the unknown scaling factor, the traditional PR condition is not necessary in the context of sub-

band BSS and can be relaxed in the design. Due to the increaseddegrees of design freedom, we can

introduce an additional cost function to enhance the mutualinformation between adjacent subband

signals. Together with a reduced subband aliasing level, itleads to an improved subband permutation

alignment result for instantaneous BSS and an overall better performance for the joint BSS.

1 Introduction

Blind source separation (BSS) has been studied extensivelyin the past due to its wide range of

applications, and various designs have been proposed to reconstruct a set of unknown signal sources

from all kinds of their mixtures [1, 2, 3, 4, 5]. There are manyeffective algorithms available for
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the instantaneous mixing problem. However, it is a simplified model that only considers magnitude

attenuations at the transmitting channel and in practice, more complicated convolutive mixing models

are often used, which also consider the effect of reverberations and delays during the transmission.

However, the direct time-domain extension of BSS algorithms from instantaneous mixtures to the

convolutive case is difficult and computationally very expensive. To tackle the convolutive mixing

problem, transformation of the received signal from the time domain to the frequency domain is

performed by discrete Fourier transform (DFT), and many separating algorithms for instantaneous

mixtures can then be applied directly, since convolutive mixing in the time domain corresponds to an

instantaneous one in the frequency domain [6, 7, 8].

The DFT and inverse DFT pair can be considered as a special class of filter banks and we can

extend the frequency-domain approach to the more general subband-based one by employing a gen-

eral filter banks system [9, 10]. The typical structure of a filter banks system withM channels is

shown in Fig. 1, where the fullband input signalx[n] is split intoM subbands by the analysis filters

h1[n], ..., hM [n], and then decimated by a factor ofN due to reduced bandwidth. ForN = M it

is a critically sampled system and it becomes an oversampledone if N < M . After the required

processing, such as BSS, the subband signals are then upsampled by the same factorN and com-

bined together to form the fullband outputy[n] by a set of synthesis filtersf1[n], ..., fM [n]. Not

limited by the DFT operation, now we have the freedom of designing all kinds of filter banks to meet

the specific requirements. To reduce the complexity in both design and implementation, we usually

choose the modulated filter banks, where only one low-pass filter has to be designed as the prototype

filter, which follows the criteria for eliminating the overall aliasing component and minimizing the

reconstruction error [11].

After decomposition by the analysis filters, the original problem becomesM sub-problems, which

can be solved individually. However, due to the blind natureof the sub-problems and the limitation of

the separation algorithms, the subband signals are separated up to unknown attenuation and permuta-

tion. Without synchronization between subbands, the synthesis process will remix the components,

reverse the separation process and degrade the overall performance severely [12]. To overcome the

permutation problem, many methods have been proposed in thepast [12, 13]. For example, for

sources like speech signals, there are strong dependenciesbetween signals from different subbands

[14]. So the alignment process based on the inter-subband correlation can be applied, which further

assumes that different source signals are all uncorrelatedand adjacent subband components of the

same source signal are highly correlated with each other [7,15].
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The correlation based alignment is a synchronizing processapplied immediately after the sepa-

ration for each subband. Alternatively, we can avoid the permutation problem at the beginning of

the separation process, by employing joint BSS algorithms [16]. A joint BSS algorithm exploits the

mutual information between multiple data sets, and assumesthat the data sets are correlated. Since

this assumption is often valid for adjacent subband signals, we can apply joint BSS algorithms in

subbands instead and their outputs will be separated and also aligned automatically.

Both methods need strong inter-subband correlation to meettheir assumptions. However, when

the number of subbands increases, the cross-correlation between adjacent subbands can be very

small, and filter banks designed by conventional techniquesare not optimum in terms of inter-

subband correlation. To tackle this problem, a cost function to maximize the cross-correlation be-

tween adjacent subbands has been proposed for cosine modulated filter banks [17]. However, since

the oversampled GDFT filter banks has a better performance insuppressing the in-band aliasing er-

ror, and therefore has a higher level of correlation betweenadjacent subbands, we will extend the

design to the oversampled GDFT filter banks in this work.

As for the scaling effect, although it can be mitigated by normalization [7], it remains ambiguous

because of the unknown mixing process, i.e., at each subband, each of the separated source signals

will be subject to an arbitrary scaling factor, which can be different for different subbands. In the

fullband domain, it is equivalent to passing the separated signal through a filter with an arbitrary

frequency response, causing distortion to it, irrespective of whether a PR (perfect reconstruction)

filter banks system is employed or not, as this distortion is unknown and can not be compensated by

the design of the filter banks. So in view of the overall systemresponse, the PR or near PR condition

is not a definitive requirement in the context of BSS. Instead, a relaxed condition is proposed in this

paper, which will provide extra degrees of design freedom for optimizing the stopband attenuation

and the additional cost function to optimize the inter-subband correlation.

There are three major contributions in this work compared to[17]. Firstly, by realizing the in-

band aliasing error in oversampled GDFT filter banks is much smaller than the cosine-modulated

filter banks, and therefore a better candidate for inter-subband correlation, we extend the design in

[17] to oversampled GDFT filter banks. Secondly, by a detailed analysis, we will show that the

PR condition required in the traditional filter banks designis not necessary and by relaxing this

condition, more degrees of freedom are available to meet other necessary criteria, and improved

results can be obtained. Thirdly, we have extended the application to joint BSS by realizing the joint

BSS algorithms will also benefit from the increased inter-subband correlation.
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This paper is structured as follows: In Section 2, the subband-based BSS structure is introduced

with two representative BSS algorithms: one for the traditional instantaneous BSS problem and one

for the joint BSS problem. In Section 3, the different designcriteria of the prototype filter for the

proposed GDFT filter banks are discussed in detail, including a new analysis about the reconstruction

condition. In Section 4, design examples and simulations results are provided and finally Section 5

concludes the paper.

2 Subband-Based BSS

2.1 Convolutive mixing model

In a real world scenario, the transmitting channels cause not only magnitude attenuation to the sig-

nals, but also all kinds of reverberations and delays. The effect is usually modelled by finite impulse

response (FIR) filters, which leads to the following convolutive mixing model

xj[n] =

Ns∑

i=1

hji[n] ∗ si[n] j = 1, ..., Ns , (1)

wherehji[n] denotes the channel impulse response from thei-th sourcesi[n] to thej-th sensor and

Ns is the source signal number. For simplicity, we also assume that the number of mixtures is the

same. For convolutive mixtures, the direct time-domain extension of BSS algorithms from instan-

taneous mixtures to the convolutive case is difficult and computationally expensive. To circumvent

this problem, it is convenient to transform the received sensor signals into the frequency domain or

different subbands, where many separating algorithms for instantaneous mixtures can be applied.

Decomposing each of the mixed signalsxj[n] into subbands, we then obtain the subband BSS

structure shown in Fig. 2 for the caseNs = 2. In this structure, each of the convolutive mixtures is

passed throughM analysis filters, followed by a decimation operation by a factor of N , after which

the length of the mixing filter is reduced by approximately the same factor, and (1) is converted into

M shorter convolution problems at different subbands [18]. If the decimation factor is sufficiently

large compared to the length of the channel impulse responsehji, (1) can be simplified into [19]

x(m)[n] = H(m)s(m)[n] , (2)

wherex(m)[n] =
[

x
(m)
1 [n], ..., x

(m)
Ns

[n]
]T

is them−th subband components of the fullband mixed

signals,s(m)[n] =
[

s
(m)
1 [n], ..., s

(m)
Ns

[n]
]T

is them−th subband components of the fullband source

signals, andH(m) is the correspondingNs ×Ns instantaneous mixing matrix.
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By estimating a separating matrixW(m) at them−th subband, the corresponding separated signal

vectoru(m)[n] is obtained by

u(m)[n] = W(m)x(m)[n] (3)

with u(m)[n] =
[

u
(m)
1 [n], ..., u

(m)
Ns

[n]
]T

.

2.2 Subband based natural gradient algorithm

Depending on the statistics of the signals, any instantaneous BSS algorithm can be employed in

the subband. As an example in this paper we use an algorithm based on minimizing the mutual

information and the learning equation for the separation matrix is obtained by the natural gradient

[1]. At the p−th iteration, the resultant separation matrix for them−th subband is given by

W(m)
p+1=W(m)

p + µ

[

I − ϕ
(

u(m)[p]
)(

u(m)[p]
)T
]

W(m)
p (4)

u(m)[p]=W(m)
p x(m)[p] , (5)

whereϕ
(
u(m)[p]

)
is the nonlinear function chosen based on the source signal’s statistical proper-

ties. Since speech signals can be approximated by a Laplacian distribution, the following nonlinear

function can be used [20]

ϕ(u(m)[p]) =




u
(m)
1 [p]

∣
∣
∣u

(m)
1 [p]

∣
∣
∣

, · · · ,
u
(m)
Ns

[p]
∣
∣
∣u

(m)
Ns

[p]
∣
∣
∣





T

. (6)

After estimating the subband separation matrix, we can express its transfer function as

W(m) · A(m) = P(m) · D(m) , (7)

whereP(m) is the permutation matrix which reveals the correspondencebetween the source and the

separated signals andD(m) is the scaling matrix that only has non-zero elements at the diagonal.

For each subband, there are uncertainties in the values ofP(m) andD(m). The indeterminacy of

D(m) causes the local scaling problem at thek−th subband, and the uncertainties of the permutation

across all the subbands cause the global permutation problem. To mitigate the scaling ambiguity

problem, we can multiply the separated components with the inverse of the separation matrix at each

subband as follows [7],

v
(m)
i [n] = 1T ·

(

W(m)
)−1

[0, · · · , 0
︸ ︷︷ ︸

i−1

, u
(m)
i [n], 0, · · · , 0

︸ ︷︷ ︸

Ns−i

]T , (8)

where1 is an all-one column vector,u(m)
i [n] is thei−th output of an instantaneous BSS at them−th

subband.
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After applying (8), we can now focus on the permutation ambiguity between subbands. For

mixtures withNs sources, there areNp = (Ns!) possible combinations between any two sub-

bands. The problem with correlation-based permutation alignment is that when the number of sub-

bands/frequencies increases, the mutual information between two subbands could be very small, ren-

dering this approach less effective. To improve the result,a novel design based on cosine-modulated

filter banks for maximizing adjacent subband correlation can be employed [21], which will be ex-

tended to oversampled GDFT filter banks in this work.

2.3 Subband based M-CCA

When we have multiple data sets available and each data set isderived from a set of its own source

signals, where different sets of the source signals are related in some way, we can recover all of the

source signals jointly taking into consideration the multivariate nature of the multiple data sets.

In many applications, if the source signals are coloured like speech signals, their subband com-

ponents are correlated especially for those neighbouring subbands. This feature can be exploited by

the multiset canonical correlation analysis (M-CCA) [16, 22], which estimates the linear relationship

of data sets by maximizing their correlation [23]. It only relies on the second-order statistics of the

signals and has been proved to be an efficient algorithm for separation [24, 25, 26].

After passing through the analysis bank, the subband signals will be pre-processed by a whiten-

ing operation; then the M-CCA based on maximizing the sum of squared correlation (SSQCOR) is

employed. At thek−th stage, the criterion to recover thek−th source is given by [16]

[w(0)
k , · · · ,w(M−1)

k ] = argmax
wk

{

M∑

m,n=1

|r̂
(m,n)
k |2} , (9)

subject to

w(m)
k ⊥

{

w(m)
1 , · · · ,w(m)

k−1

}

, (10)
∥
∥
∥w(m)

k

∥
∥
∥ = 1 , for m = 0, · · · ,M − 1 , (11)

where

r̂
(m,n)
k = corr

(

w(m)
k x(m),w(n)

k x(n)
)

. (12)

In the context of BSS,w(m)
k denotes thek−th row vector of the separation matrix applied to them−th

subband. The above orthogonality condition forw(m)
k is to make sure that at them−th subband, the

k−th separated signal is not correlated with any of thek − 1 signals separated earlier. The objective
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function (9) with two constraints (10) and (11) can be solvedby forming a Lagrangian function

with respect to the separation matrix for each of the subbands. The optimum values ofwk is then

obtained by setting its partial derivative function to zero, which leads to the solution to a generalised

eigenvalue problem that is updated for each stage [22]. The procedure is repeated until the last signal

is recovered.

Equation (12) can be further derived as

r̂
(m,n)
k = corr

(

w(m)
k A(m)s(m),w(n)

k A(n)s(n)
)

= corr
(

t(m)
k s(m), t(n)k s(n)

)

= t(m)
k Λ(m,n)t(n)k , (13)

whereΛ(m,n) is the correlation matrix of the source signalss(m) ands(n), andA(m) is the equivalent

instantaneous mixing matrix ofA for them−th subband. We useT(m) to denote the global mixing-

demixing matrix at them−th subband as

T(m) = W(m)A(m) . (14)

For a satisfactory separation result, the M-CCA would require Λ(m,n) having a form close to a

diagonal matrix, whose diagonal entries are the correlation values between the matched sources from

s
(m)
i ands(n)i , i = 1, · · · , Ns. For speech signals decomposed by filter banks, this assumption can

be enhanced by using the prototype filter optimised for the inter-subband correlation, which will be

shown in the next section.

3 Design of GDFT Filter Banks

3.1 GDFT filter banks

The analysis filters and the synthesis filters of the GDFT filter banks are derived by modulating a

prototype filterp0[n],

hm[n] = p0[n] · e
j 2π
M

(m+m0)(n+n0) , (15)

fm[n] = h∗m[Lp − n] , (16)

for n = 0, · · · , Lp − 1 ,m = 0, · · · ,M − 1 ,

wherem0 andn0 are offsets for the frequency and time indices, respectively. Whenm0 = 0.5 andM

is even, we will have a special case where the firstM/2 subbands are all located within the frequency
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range[0, π], as shown in Fig. 3. The centre of each analysis filter is located at(2mπ
M + π

M ) and filter

banks with this arrangement is often referred to as odd-stacked filter banks [27].

Because of the symmetry of the frequency responses imposed by the odd-stacked arrangement,

the first and the lastM/2 analysis filters are conjugately related [28], i.e.

hm[n] = (hM−m[n])∗ . (17)

So in case of real-valued input, only the first(2m+1)π
M subbands need to be calculated. And a good

choice for the time offset isn0 =
Lp−1

2 , where the linear phase property can be kept for all the

analysis and synthesis filters if the prototype filter has a linear phase too.

Another class of modulated filter banks is the cosine-modulated filter banks, whose coefficients

are real-valued, and the decimation rate is restricted by the theory of bandpass sampling [29]. In

contrast, the GDFT filter banks can choose any decimation ratio thatN ≤ M , and suffer less from

aliasing errors if each subband is oversampled withN > M .

3.2 Reducing subband aliasing errors

At them−th subband, the signal after decimation can be formulated bythe following equation

X(m)(z) =
1

N
Fm(z1/N )X(z1/N ) +

1

N

N−1∑

n=1

Fm(z1/N e−j2πn/N )X(z1/N e−j2πn/N ) , (18)

whereN is the decimation factor,X(m)(z) is the z-transform of the frequency decomposed signal

at them−th subband, andFm(z) is the z- transform of them−th analysis filter. The first term at

the right hand of (18) denotes the desired subband signal, and the second term denotes the sum of

(N−1) aliasing components, which are the frequency-shifted versions of the original subband signal

after decimation.

For the oversampled GDFT filter banks, the frequency response of the prototype filter is illustrated

in Fig. 4. For anM−channel filter banks system, the cut-off frequency has to be at leastωp = π/M

to cover the fullband, and the transition band is betweenπ
M andωs = π

N . In order to minimize

the overlapping of the aliasing components with the baseband signal at each subband, the stopband

energy of the prototype filter has to be minimized, which can be written as

Es =

∫ π

ωs

∣
∣P0(e

jω)
∣
∣
2
dω

=

∫ π

ωs

∣
∣
∣
∣
∣
∣

Lp−1
∑

n=0

p0[n]e
−jωn

∣
∣
∣
∣
∣
∣

2

dω . (19)
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3.3 Reconstruction condition

Based on the expression of the decimated subband signals (18), we can further derive the response

for the whole subband-based BSS system, given by

Yi(z) =
1

N

M−1∑

m=0

Gm(z)ŵ(m)
i Fm(z)X(z)

+
1

N

M−1∑

m=0

Gm(z)ŵ(m)
i ×

N−1∑

l=1

Fm(ze
−j2πl

N )X(ze
−j2πl

N ) , (20)

for i = 1, ..., Ns, whereX = [X1(z), · · · ,XNs(z)] is the z-transform of received signals,Yi(z)

denotes thei−th separated signal, andGm(z) is the z-transform of them−th synthesis filter. The

vectorŵ(m)
i is thei−th row of the matrixŴ

(m)
, which is the equivalent separation matrix after the

scaling normalisation and permutation alignment at them−th subband. The first part on the right

hand side of (20) is the transfer function between the sourceand the output and the second part

represents the aliasing components from all the frequencies.

When the stopband energy is minimised in (19) and we adopt theoversampling structure to reduce

the aliasing component, the distortion of the subband-based BSS will be governed by the first part of

(20), given by

Ed =
1

2π

∫ π

−π

∣
∣
∣
∣
∣

1

N

M−1∑

m=0

Gm(ejω)ŵ(m)
i Fm(ejω)X(ejω)− Si(e

jω)

∣
∣
∣
∣
∣

2

dω , (21)

whereSi(e
jω) is thei−th source signal.

In BSS, the mixing filterA(m) is unknown, and each of the separated signals is always subject

to an arbitrary filtering effect. In addition, the separation vectorw(m)
i will not always converge to

the ideal coefficients, and thus the separated subband signals will retain residues from other sources.

UsingXint(e
jω) to denote the interference components and the scalerβi(e

jω) for the attenuation

caused by the overall filtering effect between thei−th source and thei−th receiver at frequencyω,

we have

ŵ(m)
i X(ejω) = βi(e

jω)Si(e
jω)−Xint(e

jω) . (22)

Since the analysis and the synthesis filters are derived by the same low-pass filter, we can substitute
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∣
∣P0(e

j(ω−ωk)
∣
∣
2
= Gk(e

jω)Fk(e
jω) and (22) into (21). Therefore,

Ed =
1

2π

∫ π

−π

∣
∣
∣
∣
∣

1

N

M−1∑

m=0

∣
∣
∣P0(e

j(ω−ωk)
∣
∣
∣

2
ŵ(m)
i X(ejω)− Si(e

jω)

∣
∣
∣
∣
∣

2

dω

=
1

2π

∫ π

−π

∣
∣
∣
∣
∣

(

1

N

M−1∑

m=0

∣
∣
∣P0(e

j(ω−ωk))
∣
∣
∣

2
− 1

)

(
βi(e

jω)Si(e
jω)−Xint(e

jω)
)

−Xint(e
jω)− (1− βi(e

jω))Si(e
jω)
∣
∣
2
dω

≤
1

2π

∫ π

−π

∣
∣
∣
∣
∣

(

1

N

M−1∑

m=0

∣
∣
∣P0(e

j(ω−ωk))
∣
∣
∣

2
− 1

)

(
βi(e

jω)Si(e
jω)−Xint(e

jω)
)

∣
∣
∣
∣
∣

2

+
∣
∣Xint(e

jω)
∣
∣
2
+
∣
∣(1− βi(e

jω))Si(e
jω)
∣
∣
2
dω , (23)

whereH(ejω) is the frequency response of the prototype filter,ωm = 2π(m+1/2)
M , andβi is an un-

known scaling coefficient, determined by the mixing filters.Thus, the value of
∣
∣(1− βi(e

jω))Si(e
jω)
∣
∣2

is also unknown.

Now assume for a perfect separation, i.e.,βi = 1 and the interference component
∣
∣Xint(e

jω)
∣
∣2

is eliminated. Then only the first part of the final expressionof (23) remains, which can be further

transformed into

Ed1 =
1

2π

∫ π

−π

∣
∣
∣
∣
∣

(

1

N

M−1∑

m=0

∣
∣
∣P0(e

j(ω−ωm))
∣
∣
∣

2
− 1

)

(
Si(e

jω)−Xint(e
jω)
)

∣
∣
∣
∣
∣

2

≤ max
ω

∣
∣Si(e

jω)−Xint(e
jω)
∣
∣
2 1

2π

∫ π

−π

(

1

N

M−1∑

k=0

∣
∣
∣P0(e

j(ω−ωm))
∣
∣
∣

2
− 1

)

dω . (24)

It defines the upper bound of the reconstruction error, and forms the classic power complimentary

condition for the prototype filter andEd1 can be minimised by adopting the PR condition

1

N

M−1∑

m=0

∣
∣
∣P0(e

j(ω−ωm))
∣
∣
∣

2
= 1. (25)

However, as the separating matrixW (m) can only be approximated by the inverse of the mixing filter

at each subband subject to an arbitrary scaling function by the BSS algorithm, the assumption of

βi = 1 and
∣
∣Xint(e

jω)
∣
∣2 = 0 is not practical and the PR condition is not really necessaryin the

context of subband-based BSS.

However, instead of removing the PR condition completely, we can adopt a relaxed condition on

the passband energy of the prototype filter, given by

Ep =
1

Np

Np∑

k=1

∣
∣
∣

∣
∣P0(e

jwk)
∣
∣
2
− 1
∣
∣
∣

2

=
1

Np

Np∑

k=1

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

n=Lp−1
∑

n=0

h0[n]e
−jωkn

∣
∣
∣
∣
∣
∣

2

− 1

∣
∣
∣
∣
∣
∣

2

, (26)
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whereNp is the number of frequency points selected, and the frequency points [w1, · · · , wNp ] ∈

(0, π
M ). During optimization, only a small value forNp is needed.

3.4 Inter-subband correlation

The relaxed PR condition requires much fewer number of constraints at the passband of the prototype

filter. The additional design freedom provides chance to further reduce the energy at the stopband,

and also more space to introduce a new optimization criterion specific for the BSS application.

As mentioned, the mutual information between subbands is important to permutation alignment

and the joint BSS by M-CCA. In [21], the cost function of the inter-subband correlation is proposed,

in which the correlationr over allM channels is calculated by (27), (28) and (29).

r(m,m+1) = arg max
l∈[−p,...,p]

{

|λ(m,m+1)(l)|
}

, (27)

λ(m,m+1)(l) =

∞∑

n=0

[

q(m)[n+ l]
] [

q(m+1)[n]
]

σ
(m)
q · σ

(m+1)
q

, (28)

r =
1

M − 1

M−1∑

m=1

r(m,m+1) . (29)

wherep is a small positive integer defining the range of the time lag over which the correlation

is considered,λ(m,m+1)(l) is the normalised correlation between them−th and the(m + 1)−th

subbands with an offsetl, q(m)[n+ l] is them−th channel decimated signal for a general input signal

q[n] at time indexn+ l, q[n] is modelled as a zero-mean wide sense stationary white Gaussian signal,

andσ(m)
q is the standard deviation ofq(m)[n].

Because the magnitude of the normalised correlation is always smaller than1, the objective func-

tion about the inter-subband correlation for minimizationcan be formulated as

Φcorr = 1− r . (30)

For the proposed design of the GDFT prototype filter, the optimization ofp0[n] is formulated

in (31), which minimises both the stopband energyEs given in (19) andΦcorr, constrained by the

frequency response at the passband defined in (26)

min
h[n],0≤n≤Lp

(1− α)Es + α · Φcorr subject to Ep < ǫp , (31)

whereǫp is a small value set to be the upper limit of the passband distortion errorEp andα is the

weighting factor between stopband attenuationEs and subband correlationΦcorr.
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Equation (31) is similar to the design of cosine-modulated filter banks proposed in [21]. However,

for the reason stated in the previous section, the original PR condition is replaced by a soft constraint

on the passband response of the prototype filter. As a result,the aliasing error is expected to be

reduced significantly by replacing the cosine modulation with GDFT modulation, which translates

into further increased inter-subband correlation, so thatan improved performance can be obtained.

Moreover, for the two components in the cost function of the proposed design, if we want to

increase the level of cross-correlation, the stopband attenuation for the designed prototype filter has

to be smaller, which may increase the aliasing level after downsampling and as a result reduce the

cross-correlation between the adjacent subbands after downsampling. On the other hand, smaller

attenuation at the stopband also undermines the assumptionthat after subband decomposition, the

convolutive mixing problem has been transformed into an instantaneous one. One important note is

that, even if we have the same PR condition, the same stopbandattenuation and the same overlapped

area between adjacent subbands as the existing designs, theproposed method will at least have an

effect of re-distributing the correlation value among different time lags and focusing the overall

correlation at a specific time lag, so that we can use the correlation at that time lag for more effective

permutation alignment.

3.5 Discussions

One issue with the choice of the oversampled GDFT filter banksis the values ofM andN . In theory,

there are mainly two factors to consider in determining the values ofM andN . First, they should

be large enough to make sure that after subband decomposition, the convolutive mixing problem

has been transformed into a series of instantaneous mixing problems. In this case, their values

are actually determined by the complexity of the unknown fullband mixing filters in the original

convolutive mixing problem. However, a large value forM andN increases the computational

complexity of the system and reduces the data length of the decomposed subband signals, with the

latter one leading to less accurate estimation of their statistics and cross-correlation, and as a result a

degraded overall performance. It is extremely difficult, ifnot impossible, to determine their optimum

values and for now they can only be chosen empirically. The same problem exists in the frequency-

domain BSS method, i.e., how to choose the right length of theDFT operation.

For oversampled GDFT filter banks, another problem is the ratio betweenM andN . A larger ratio

M/N gives more overlapped area between adjacent subbands, and leaves more degrees of freedom

for cross-correlation maximization. However, this also results in higher computational complexity

12



M = 64 N = 48

ws = 1.96π/N wp = 1.9π/M

l = 0 or 2 Lp = 384

ǫp = 10−3 α = 10−2

Np = 4

Table 1: Parameters of the design example for the proposed filter banks.

for the same value ofM .

4 Design Examples and Simulation Results

4.1 Design examples

Two example prototype filters are designed based on the proposed method with the design parameters

listed in Table 1 and the resultant frequency response shownin Figs. 5(b) and 5(c). As for the M-

CCA based joint BSS, the inter-subband correlation is calculated based on the zero lag, withl = 0,

and for permutation alignment, lags around zeros are considered, withl = 2.

For comparison, the prototype filter for conventional GDFT filter banks ofM = 64 andN = 48

is also designed, and the frequency response is shown in Fig.5(a). The frequency response in Fig.

5(c) has a small ripple around the passband edge, as the PR condition is relaxed. In return, it has a

wider bandwidth for signal to pass and a steeper transition band before reaching the aliasing margin

atπ/N . The improvement due to the new design can be evaluated by calculating the signal to aliasing

ratio (SAR) [30], given by

SAR=

∫ π/N
0

∣
∣P0(e

jω)
∣
∣2 dω

∫ π
π/N |P0(ejω)|

2 dω
. (32)

The proposed prototype filter achieves a ratio of29.80 dB while the conventional one is 26.99 dB.

4.2 Joint BSS using M-CCA

First, we consider a BSS problem with three speakers and three receivers. Nine randomly generated

FIR filters are used for mixing, as shown in Fig. 6 and three recorded speech signals are used as

source signals, sampled at8 KHz. We attempt to solve the problem by using the subband based

M-CCA algorithm explained in Section 2.3.

13



During the experiments, the oversampled GDFT filter banks with 64 channels and a decimation

ratio of 48 are employed with the optimised prototype filter.The iterative M-CCA algorithm is ap-

plied to the 64 subband signals, which uses the SSQCOR criterion to optimise the correlation between

different data sets. For each subband, a3× 3 separation matrix and three separated subband signals

are then obtained. Unlike the existing frequency-domain orsubband-based BSS, these separation

matrices are optimised jointly, and post-processing for permutation alignment is not required.

Since the mixing filters and source signals are available forevaluation, we can obtain the overall

impulse responseT[n] of the mixing-demixing system, which is shown in Fig. 7, and the outputs are

given by

yj[n] =

K=3∑

i=1

tji[n] · si[n] i = 1, 2, 3 , (33)

wheretji[n] is the(j, i)th entry ofT[n] andyj[n] is the j−th output. As the magnitudes inA11,

A22 andA33 are much larger than the others, and have a similar shape as the impulse, the resultant

outputs are well separated signals corresponding to the three source signals.

For comparison, we also used the filter banks whose prototypefilter is designed by the conven-

tional method [28]. We can calculate the output SIR for each output and a comparison of the results

is shown in Fig. 8, where an improvement for the optimised system can be observed. Due to the in-

crease in mutual information between subbands, the M-CCA algorithm has provided more accurate

estimation of the linear relationship between subband data, and avoided the permutation misalign-

ment problem, which occurred at the 3rd output using the conventional filter banks and adversely

affected the overall separation result.

4.3 Natural gradient algorithm with permutation alignment

In this simulation, two sets of mixing filters are randomly generated, which are 10 taps long and 20

taps long, respectively, as shown in Figs. 9(a) and 9(b). Theconventional GDFT filter banks and the

proposed GDFT filter banks in Simulation I are applied for subband decomposition and same speech

signals are used as the sources.

Figs. 10 and 11 show the subband SIR result when the mixing filters of length= 10 is used,

and both the proposed and the conventional GDFT filter banks have produced good results at lower

frequencies, where an SIR level around5 dB is achieved. However, as we can see at subbandm = 21

of the conventional system, misalignment occurs and the subband SIRs for the three outputs are

(−20.1, 5.24,−4.72) dB. Comparing the separated signals with the source signals, we can obtain
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the SIRs for correct permutation, which are (18.05, 5.24, 2.07) dB. When the subband SIRs are at

a low level, i.e.,2.07 dB, a misalignment occurs because of the presence of interference signals.

Similarly for m = 22, the subband SIRs are (−23.09. − 7.07,−20.20) dB and the fixed SIRs are

(21.199.401.42) dB, which caused a second misalignment because of the same reason.

In contrast, when the proposed design is employed, the subband SIR has changed to (12.75, 7.63, 4.2)

dB and (17.07, 6.69, 2.84) dB; however, correct alignment is obtained as the proposeddesign can en-

hance the inter-subband correlation between matched subband signals.

In Figs. 12 and 13, mixing filters of length= 20 are used for the convolutive mixtures. As the

mixing filters become longer with a more complicated frequency response, the separation is expected

to become more difficult as the number of estimated coefficients has been increased. This change

can be observed from the two figures, as the subband separation performance becomes worse and

more misalignments are presented for both GDFT filter banks.For the conventional design, the

misalignment appeared at(m = 5, 9, 14, 15, 23, 40, 48, 49, 54, 58), and permutation errors propa-

gate between these subbands, which has severely distorted the separation results. However, as the

proposed design is more robust to the reduction of subband SIR, misalignment has only occurred at

subbands with lowest SIR (atm = 15, 23, 40, 48). Since the first misalignment occurred at a higher

subband, and the energy of speech signals is normally focused on lower frequencies, the impact from

the permutation errors is less significant.

The fullband overall SIR values can be obtained by passing the subband componentst(m)
ii · s

(m)
i

andt(m)
ij · s

(m)
j through the synthesis filters and calculating the ratio after the summation. Table 2

summarises the results of Simulation I and Table 2 summarises the results of Simulation II.

The number of misalignments and errors is obtained for each simulation. Cosine-modulation

without correlation optimization produced the worst results, and by introducing correlation optimiza-

tion, the number of permutation errors is largely reduced. The GDFT filter banks have much better

separation results, which reveals that the subband aliasing components have a significant negative

impact on the performance of the subband-based BSS.

The proposed and the conventional GDFT filter banks have similar results when the subband

SIRs are high, where permutation alignment can be correctlyachieved. However, when separation

difficulty increases, which is usually because of the changes in the source signals or the mixing

filters, permutation misalignment may occur. For the proposed design, it is quite robust and correct

alignment can still be obtained even when the subband SIR is relatively low.
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The permutation error is a good performance indicator of thesubband-based BSS, and when the

subband system has zero permutation error, the BSS algorithm can reach its full potential; while the

proposed prototype filter is designed to improve the alignment result, misalignment may still occur

at a few subbands. Although occurrence of the misalignment is hardly predicted and a few misalign-

ment may propagate to a larger number of subbands, the proposed design can generally improve the

overall separation result, and if the misalignment occurs at higher frequencies, the majority of the

source speech signals can still be separated.

Table 2: Results of simulation I: averaged fullband SIR values for each output, the number of

permutation errors and permutation misalignments.

SIR1 (dB) SIR2 (dB) permutation error misalignment

conventional CMFB 2.1 -1.9 26/64 17/64

correlation maximized CMFB 12.19 6.1 0 0

conventional GDFT 14.26 10.5 20/64 2/64

proposed GDFT 20.18 10.8 0 0

Table 3: Results of simulation II: averaged fullband SIR values for each output, the number of

permutation errors and permutation misalignments.

SIR1 (dB) SIR2 (dB) SIR3 (dB) perm error misalignment

mixing tap = 10

conventional GDFT 12.55 15.1 17.9 24/64 4/64

proposed GDFT 20.4 16.8 17.24 0 0

mixing tap = 20

conventional GDFT 2.98 1.99 13.22 20/64 10/64

proposed GDFT 12.56 6.33 13.53 16/64 2/64

5 Conclusions

In this paper, an oversampled GDFT filter banks design with correlation optimization has been pro-

posed. By relaxing the traditional PR condition, we can focus on stopband energy minimization

and inter-subband correlation optimization. Meanwhile, subband based separation using the M-CCA

algorithm and the natural gradient algorithm has been studied, which can be used to solve the convo-
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lutive mixing BSS problem. As both methods rely on good inter-subband correlation, an improved

performance has been achieved by the proposed design for both BSS algorithms, as demonstrated by

our simulations.
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Figure 5: Frequency response of three prototype filters of a 64-channel GDFT filter banks system,

designed by the conventional method and the proposed method, respectively.
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Figure 6: The 5-tap randomly generated mixing filters.
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Figure 8: The output SIR for the64-channel subband M-CCA, with comparison between

correlation-optimised filter banks and the conventional ones.
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Figure 9: Impulse responses of the mixing filters for a three-speaker-three-receiver system. (a)

mixing filter is 10 tap long (b)mixing filter is 20 tap long

28



0 10 20 30 40 50 60
−30

−20

−10

0

10

20

30

40

Subband channel

S
IR

(d
B

)

 

 
output1
output2
output3
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modulated filter banks for mixing filters of length= 10.
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Figure 11: The subband SIR for the three outputs using the proposed oversampled GDFT

modulated filter banks for mixing filters of length= 10.
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Figure 12: The subband SIR for the three outputs using the conventional oversampled GDFT filter

banks for mixing filters of length= 20.
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Figure 13: The subband SIR for the three outputs using the proposed oversampled GDFT filter

banks for mixing filters of length= 20.
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