-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by White Rose Research Online

The
University

Sheffield.

This is a repository copy of Design of oversampled generalised discrete Fourier transform
filter banks for application to subband-based blind source separation.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/93762/

Version: Accepted Version

Article:

Peng, B., Liu, W. and Mandic, D.P. (2013) Design of oversampled generalised discrete
Fourier transform filter banks for application to subband-based blind source separation.
IET Signal Processing, 7 (9). pp. 843-853. ISSN 1751-9675

https://doi.org/10.1049/iet-spr.2012.0361

This paper is a preprint of a paper accepted by IET Signal Processing and is subject to
Institution of Engineering and Technology Copyright. When the final version is published,
the copy of record will be available at IET Digital Library

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

A

A\ White Rose  uerese aca
. it H eprints@whiterose.ac.u
‘\ /h Hﬂﬁ'{gﬁf{:{ L‘iei{_}:;ilz LL\J,UT https://eprints.whiterose.ac.uk/



https://core.ac.uk/display/42616285?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Design of Oversampled GDFT Filter Banks for Application to

Subband Based Blind Source Separation

Bo Peng and Wei Liu
Communications Research Group
Department of Electronic and Electrical Engineering

University of Sheffield, UK

Danilo P. Mandic
Communications and Signal Processing Research Group
Department of Electrical and Electronic Engineering

Imperial College London, UK

Abstract. A novel design of oversampled generalised discrete Fowansform (GDFT) filter banks

is proposed, with application to subband-based convautlind source separation (BSS), where ei-
ther instantaneous BSS algorithms or joint BSS algorithamsbe applied. Conventional filter banks
design is usually focused on elimination of the overallsitig error and the perfect reconstruction
(PR) condition, which are required by traditional subbaddmive filtering applications. However,

due to the unknown scaling factor, the traditional PR caolits not necessary in the context of sub-
band BSS and can be relaxed in the design. Due to the increlageees of design freedom, we can
introduce an additional cost function to enhance the mutdaimation between adjacent subband
signals. Together with a reduced subband aliasing levekds to an improved subband permutation

alignment result for instantaneous BSS and an overallgttgormance for the joint BSS.

1 Introduction

Blind source separation (BSS) has been studied extensivellye past due to its wide range of
applications, and various designs have been proposeddnsteact a set of unknown signal sources

from all kinds of their mixtures [1, 2, 3, 4, 5]. There are masffective algorithms available for



the instantaneous mixing problem. However, it is a simglifi@odel that only considers magnitude
attenuations at the transmitting channel and in practiceemomplicated convolutive mixing models
are often used, which also consider the effect of reveribmgtnd delays during the transmission.
However, the direct time-domain extension of BSS algorlfrom instantaneous mixtures to the
convolutive case is difficult and computationally very expige. To tackle the convolutive mixing

problem, transformation of the received signal from theetidomain to the frequency domain is
performed by discrete Fourier transform (DFT), and manyassng algorithms for instantaneous
mixtures can then be applied directly, since convolutivgingj in the time domain corresponds to an

instantaneous one in the frequency domain [6, 7, 8].

The DFT and inverse DFT pair can be considered as a specsd ofdilter banks and we can
extend the frequency-domain approach to the more gendsbhad-based one by employing a gen-
eral filter banks system [9, 10]. The typical structure of gffibanks system witid/ channels is
shown in Fig. 1, where the fullband input signah] is split into A/ subbands by the analysis filters
hi[n], ..., har[n], and then decimated by a factor 8f due to reduced bandwidth. F&f = M it
is a critically sampled system and it becomes an oversanpiedf N < M. After the required
processing, such as BSS, the subband signals are then Updamphe same factav and com-
bined together to form the fullband outpyln| by a set of synthesis filter§; [n], ..., fas[n]. Not
limited by the DFT operation, now we have the freedom of dénigjall kinds of filter banks to meet
the specific requirements. To reduce the complexity in beigh and implementation, we usually
choose the modulated filter banks, where only one low-pdss lfias to be designed as the prototype
filter, which follows the criteria for eliminating the ovéraliasing component and minimizing the

reconstruction error [11].

After decomposition by the analysis filters, the originalldgem become3/ sub-problems, which
can be solved individually. However, due to the blind natfrine sub-problems and the limitation of
the separation algorithms, the subband signals are sedanato unknown attenuation and permuta-
tion. Without synchronization between subbands, the ggihprocess will remix the components,
reverse the separation process and degrade the overalimarfce severely [12]. To overcome the
permutation problem, many methods have been proposed ipaste[12, 13]. For example, for
sources like speech signals, there are strong dependdratigsen signals from different subbands
[14]. So the alignment process based on the inter-subbamelation can be applied, which further
assumes that different source signals are all uncorrefatddadjacent subband components of the

same source signal are highly correlated with each othd57,



The correlation based alignment is a synchronizing proapptied immediately after the sepa-
ration for each subband. Alternatively, we can avoid therpgation problem at the beginning of
the separation process, by employing joint BSS algoritht6$ [A joint BSS algorithm exploits the
mutual information between multiple data sets, and asstihatshe data sets are correlated. Since
this assumption is often valid for adjacent subband sigveéscan apply joint BSS algorithms in

subbands instead and their outputs will be separated andlidsned automatically.

Both methods need strong inter-subband correlation to thegtassumptions. However, when
the number of subbands increases, the cross-correlatiovede adjacent subbands can be very
small, and filter banks designed by conventional techniquesnot optimum in terms of inter-
subband correlation. To tackle this problem, a cost functiomaximize the cross-correlation be-
tween adjacent subbands has been proposed for cosine neatfilier banks [17]. However, since
the oversampled GDFT filter banks has a better performanseppressing the in-band aliasing er-
ror, and therefore has a higher level of correlation betwadjacent subbands, we will extend the

design to the oversampled GDFT filter banks in this work.

As for the scaling effect, although it can be mitigated bymalization [7], it remains ambiguous
because of the unknown mixing process, i.e., at each subkact of the separated source signals
will be subject to an arbitrary scaling factor, which can lféedent for different subbands. In the
fullband domain, it is equivalent to passing the separaigdat through a filter with an arbitrary
frequency response, causing distortion to it, irrespectif whether a PR (perfect reconstruction)
filter banks system is employed or not, as this distortiomlksnewn and can not be compensated by
the design of the filter banks. So in view of the overall systesponse, the PR or near PR condition
is not a definitive requirement in the context of BSS. Inst@actlaxed condition is proposed in this
paper, which will provide extra degrees of design freedonofttimizing the stopband attenuation

and the additional cost function to optimize the inter-arbcorrelation.

There are three major contributions in this work comparefL . Firstly, by realizing the in-
band aliasing error in oversampled GDFT filter banks is muunhlker than the cosine-modulated
filter banks, and therefore a better candidate for intebant correlation, we extend the design in
[17] to oversampled GDFT filter banks. Secondly, by a dafadealysis, we will show that the
PR condition required in the traditional filter banks desigmot necessary and by relaxing this
condition, more degrees of freedom are available to meeadrotacessary criteria, and improved
results can be obtained. Thirdly, we have extended thecstiglh to joint BSS by realizing the joint

BSS algorithms will also benefit from the increased intdsksind correlation.



This paper is structured as follows: In Section 2, the suddzased BSS structure is introduced
with two representative BSS algorithms: one for the tradai instantaneous BSS problem and one
for the joint BSS problem. In Section 3, the different desigiteria of the prototype filter for the
proposed GDFT filter banks are discussed in detail, inctydinew analysis about the reconstruction
condition. In Section 4, design examples and simulatiossltg are provided and finally Section 5

concludes the paper.

2 Subband-Based BSS

2.1 Convolutive mixing model

In a real world scenario, the transmitting channels caus®mly magnitude attenuation to the sig-
nals, but also all kinds of reverberations and delays. Tteeeis usually modelled by finite impulse

response (FIR) filters, which leads to the following contigkeimixing model

Ns
x][n] = Zhﬂ[n] * sl[n] ] = 1, ...,NS s (l)
i=1

whereh;[n] denotes the channel impulse response from-tesources; || to the j-th sensor and

N, is the source signal number. For simplicity, we also assuratthe number of mixtures is the
same. For convolutive mixtures, the direct time-domaireesion of BSS algorithms from instan-
taneous mixtures to the convolutive case is difficult and patationally expensive. To circumvent
this problem, it is convenient to transform the receivedssemignals into the frequency domain or

different subbands, where many separating algorithms&santaneous mixtures can be applied.

Decomposing each of the mixed signalgn] into subbands, we then obtain the subband BSS
structure shown in Fig. 2 for the cadg, = 2. In this structure, each of the convolutive mixtures is
passed through/ analysis filters, followed by a decimation operation by ddaof IV, after which
the length of the mixing filter is reduced by approximatelg #ame factor, and (1) is converted into
M shorter convolution problems at different subbands [18fhé decimation factor is sufficiently

large compared to the length of the channel impulse respesél) can be simplified into [19]
X" [n] = HIM ™ ] 2)

T

wherex(™)[n] = {x(lm) [n], ...,x%f) [n]] is them—th subband components of the fullband mixed
T

signals,s™)[n] = [sg”“ n], ... 553? [n]} is them—th subband components of the fullband source

signals, andH (™ is the correspondin@V, x N, instantaneous mixing matrix.
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By estimating a separating matiiX("™ at them—th subband, the corresponding separated signal
vectoru™ [n] is obtained by

umn] = Wmxmp] (3)

T
mmmmmp:@@my”dmmﬂ.

2.2 Subband based natural gradient algorithm

Depending on the statistics of the signals, any instantan®&8S algorithm can be employed in
the subband. As an example in this paper we use an algoritlsedban minimizing the mutual
information and the learning equation for the separatiotrimes obtained by the natural gradient

[1]. At the p—th iteration, the resultant separation matrix for the-th subband is given by

WU =W 4 g [I — ¢ (u™p]) (u“”)[pJ)T] W (4)
ut™ [pl =W p) (5)

wherep (u(m) [p]) is the nonlinear function chosen based on the source sigsialtistical proper-
ties. Since speech signals can be approximated by a Lapldistibution, the following nonlinear

function can be used [20]

{ AP ]T
( . s ) (6)

]

After estimating the subband separation matrix, we canesspits transfer function as
w L Alm) = p(m) . pm) 7)

whereP(™ s the permutation matrix which reveals the correspondéeteeen the source and the

separated signals ami™ is the scaling matrix that only has non-zero elements atidgodal.

For each subband, there are uncertainties in the value§"ofandD™). The indeterminacy of
D™ causes the local scaling problem at theth subband, and the uncertainties of the permutation
across all the subbands cause the global permutation probl® mitigate the scaling ambiguity
problem, we can multiply the separated components withiverse of the separation matrix at each

subband as follows [7],

-1
U.(m)[n] =1". (W(m)) 0,---,0 u(Am)[n],O,“' ’OT ) (8)

7

i—1 Ny—i
wherel is an all-one column vecton,gm) [n] is thei—th output of an instantaneous BSS at the th

subband.



After applying (8), we can now focus on the permutation amitygbetween subbands. For
mixtures with N sources, there ard/, = (N,!) possible combinations between any two sub-
bands. The problem with correlation-based permutatiamaient is that when the number of sub-
bands/frequencies increases, the mutual informationdmiviwo subbands could be very small, ren-
dering this approach less effective. To improve the reaulipvel design based on cosine-modulated
filter banks for maximizing adjacent subband correlation ba employed [21], which will be ex-

tended to oversampled GDFT filter banks in this work.

2.3 Subband based M-CCA

When we have multiple data sets available and each data detived from a set of its own source
signals, where different sets of the source signals aréeckla some way, we can recover all of the

source signals jointly taking into consideration the nvaltiate nature of the multiple data sets.

In many applications, if the source signals are coloureel $igeech signals, their subband com-
ponents are correlated especially for those neighbourtibgands. This feature can be exploited by
the multiset canonical correlation analysis (M-CCA) [18],2vhich estimates the linear relationship
of data sets by maximizing their correlation [23]. It onlyiee on the second-order statistics of the

signals and has been proved to be an efficient algorithm faaraéon [24, 25, 26].

After passing through the analysis bank, the subband sigmdllbe pre-processed by a whiten-
ing operation; then the M-CCA based on maximizing the sumofsed correlation (SSQCOR) is

employed. At thek—th stage, the criterion to recover the-th source is given by [16]

M
Wi wi D) = ar%]Vma>{ > A2y (9)
k m,n=1

subject to
W,(cm) 1 {ng), ‘e ,W,(;f)l} ) (10)
Hw,@H:l, for m=0,--- ,M—1, (11)

where

flgm’”) = corr (Wﬁgm)x(m),wli”)x(”)> . (12)

In the context of BSS/,V,(;”) denotes thé—th row vector of the separation matrix applied to the th
subband. The above orthogonality condition \Njf") is to make sure that at the—th subband, the

k—th separated signal is not correlated with any ofithe 1 signals separated earlier. The objective



function (9) with two constraints (10) and (11) can be solbgdforming a Lagrangian function
with respect to the separation matrix for each of the subhaithe optimum values of;, is then
obtained by setting its partial derivative function to zestich leads to the solution to a generalised
eigenvalue problem that is updated for each stage [22]. Tdwedure is repeated until the last signal

is recovered.

Equation (12) can be further derived as

A — corr (ngm)A(m)S(m) ; W,ﬁ")A(”)s(”))
— corr (tgcm)s(m),t,g”)s(”» - tgcm)A(m’”)tgcn) , (13)
whereA (™) is the correlation matrix of the source signslf&) ands™, andA (™ is the equivalent

instantaneous mixing matrix @ for the m—th subband. We usg(™ to denote the global mixing-

demixing matrix at then—th subband as

T = wimalm (14)

For a satisfactory separation result, the M-CCA would regni™™ having a form close to a
diagonal matrix, whose diagonal entries are the correlatidues between the matched sources from
s§m> andsgn),i = 1,---, N,. For speech signals decomposed by filter banks, this asgnmygan
be enhanced by using the prototype filter optimised for therisubband correlation, which will be

shown in the next section.

3 Design of GDFT Filter Banks

3.1 GDFT filter banks

The analysis filters and the synthesis filters of the GDFTrfli@nks are derived by modulating a

prototype filterpg[n],

hm[n] = pofn] - €3 (mEmo)ntno) (15)
fmln] = hL[Ly,—n], (16)
for n=0,---,L,—1,m=0,--- ,M—1,

wherem andn are offsets for the frequency and time indices, respegti¥henmy = 0.5 and M

is even, we will have a special case where the fifg2 subbands are all located within the frequency



range[0, 7], as shown in Fig. 3. The centre of each analysis filter is &stat(2~ + I) and filter

banks with this arrangement is often referred to as oddsthfilter banks [27].

Because of the symmetry of the frequency responses impgsttndd-stacked arrangement,

the first and the last//2 analysis filters are conjugately related [28], i.e.
hm[n] = (har—m[n])" - a7

So in case of real-valued input, only the fiﬁé%)” subbands need to be calculated. And a good

choice for the time offset iy = Ll’;l, where the linear phase property can be kept for all the

analysis and synthesis filters if the prototype filter hasedr phase too.

Another class of modulated filter banks is the cosine-mdddléilter banks, whose coefficients
are real-valued, and the decimation rate is restricted bythbory of bandpass sampling [29]. In
contrast, the GDFT filter banks can choose any decimation ttzt N < M, and suffer less from

aliasing errors if each subband is oversampled Wwith- M.

3.2 Reducing subband aliasing errors

At the m—th subband, the signal after decimation can be formulatetidofollowing equation
1 1 N-1
(m) - 1/N 1/N il 1/N —j2mn/N 1/N —j2mn/N
X0 = GEn X E) £ 5 3 FalH e BN ag)

whereN is the decimation factocX ™ (z) is the z-transform of the frequency decomposed signal
at them—th subband, and’,,(z) is the z- transform of then—th analysis filter. The first term at
the right hand of (18) denotes the desired subband signdlt{hensecond term denotes the sum of
(N —1) aliasing components, which are the frequency-shiftedwesf the original subband signal

after decimation.

For the oversampled GDFT filter banks, the frequency respofihe prototype filter is illustrated
in Fig. 4. For anM —channel filter banks system, the cut-off frequency has td laatw, = /M
to cover the fullband, and the transition band is betwgerandw, = .. In order to minimize
the overlapping of the aliasing components with the bastlsanal at each subband, the stopband
energy of the prototype filter has to be minimized, which camitten as
E, = ’ !Po(ejw)‘Z dw

Ws

Ly—1

2
_ / IS polle | dw (19)
Ws | n=0



3.3 Reconstruction condition

Based on the expression of the decimated subband signajsn@&an further derive the response

for the whole subband-based BSS system, given by

1 M-1
Yi(z) =55 D G20 Fn(2)X (2)
m=0
1 Nl (m) Nl —j2nl —j2nl
+ Gr(2W;™ x > F(ze v )X(ze ¥ ), (20)
m=0 =1
fori = 1,..., N5, whereX = [X;(z), -+, Xn,(z)] is the z-transform of received signals;(z)

denotes thé—th separated signal, ar@@,,(z) is the z-transform of then—th synthesis filter. The
(m)

m)

vectorw™ is thei—th row of the matrix\v

; , Which is the equivalent separation matrix after the
scaling normalisation and permutation alignment atrtheth subband. The first part on the right
hand side of (20) is the transfer function between the soantkthe output and the second part

represents the aliasing components from all the frequencie

When the stopband energy is minimised in (19) and we adomiMiiesampling structure to reduce
the aliasing component, the distortion of the subbandéhB8&S will be governed by the first part of

(20), given by

1 m
.
2 J_,

wheresS;(e’“) is thei—th source signal.

M-1 2

1 o m " Y "

DY G (0™ (679X (e89) — Si(e7)| duw | (21)
m=0

In BSS, the mixing filterA™ is unknown, and each of the separated signals is alwayscsubje
(m)

to an arbitrary filtering effect. In addition, the separatieectorw, " will not always converge to
the ideal coefficients, and thus the separated subbandsigitlaretain residues from other sources.
Using X;.:(e7“) to denote the interference components and the s@alef*) for the attenuation
caused by the overall filtering effect between théh source and thé—th receiver at frequency,
we have

WX (€79) = Bi(e7)8i(e7) — Xia (™) . (22)

Since the analysis and the synthesis filters are derivedeogaime low-pass filter, we can substitute



|P0(ej(“—wk)|2 = Gp(e/*)Fi(e7*) and (22) into (21). Therefore,

2

LmILNe 2 m
= — —_ J(w—wy 7, (m oy Qo ajw
Ea o2 ). NmZ::O‘PO(e )| W X(e?) = Si(e)Y)| dw
1 i 1 M-1 . 9 . . |
S (N > [P ) ‘1> (B(E)SH(e) = Xina()
—Xint() = (1= Bi(e) (") dw
T M—-1 9 ' ' | 2
S o ( ()| —1> (Bi(™)Si(e™) — Xint (&)
m=0
() + - BN, 23)
where H (e*) is the frequency response of the prototype filtey, = Z-"F/2) "and g, is an un-

known scaling coefficient, determined by the mixing filtéFaus, the value o 1 — ;(e7%)).5; (e7«) |

is also unknown.

Now assume for a perfect separation, i&.~ 1 and the interference componqdfmt(ej”)|2
is eliminated. Then only the first part of the final expressbii23) remains, which can be further

transformed into
2

(LA M : ' -
; w2 1M1 M !
< max |S;(e7) — Xin(e?) 2—/ ( ‘Po (¢ wmwm) ‘ —1) dw . (24)
w ™
o k=0

It defines the upper bound of the reconstruction error, antidahe classic power complimentary

condition for the prototype filter anf;, can be minimised by adopting the PR condition
LN [ py (et 2
Nmzo‘()(e | =1 (25)

However, as the separating matfix(™ can only be approximated by the inverse of the mixing filter
at each subband subject to an arbitrary scaling functiorhbyBISS algorithm, the assumption of
B; = 1 and |Xz-m(ej°”)|2 = 0 is not practical and the PR condition is not really necesgaihe

context of subband-based BSS.

However, instead of removing the PR condition completely,o&an adopt a relaxed condition on

the passband energy of the prototype filter, given by

Np

1 . 2
B, = — |Po(eﬂwk)|2—1(
Np k=1
1 Np ||n=Lp—1 ‘ 2 2
= & > holnle i) —1f (26)
Pr=1|| n=0
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where N, is the number of frequency points selected, and the frequpats [w1,--- ,wn,]| €

(0, §7)- During optimization, only a small value fay, is needed.

3.4 Inter-subband correlation

The relaxed PR condition requires much fewer number of caimé$ at the passband of the prototype
filter. The additional design freedom provides chance tth&rrreduce the energy at the stopband,

and also more space to introduce a new optimization critesjeecific for the BSS application.

As mentioned, the mutual information between subbands ®itant to permutation alignment
and the joint BSS by M-CCA. In [21], the cost function of théensubband correlation is proposed,

in which the correlatiorF over all M channels is calculated by (27), (28) and (29).

(m,m+1)  _ )\(m,m—l—l) l 27
r arg max {I ( )I} ; (27)
> [a™ i+ 11] [V
Amma) gy = 1= ’ (28)
J(gm) 'O_(ngrl)
=
ra — (m7m+1)
T 71 mZ:l r . (29)

wherep is a small positive integer defining the range of the time lagravhich the correlation

is considered \("-™+1)(1) is the normalised correlation between the-th and the(m + 1)—th
subbands with an offsétq("™ [n + 1] is them—th channel decimated signal for a general input signal
g[n] attime indexn+1, g[n] is modelled as a zero-mean wide sense stationary white @awsgnal,

ando{™ is the standard deviation gf™ [n].

Because the magnitude of the normalised correlation isyshsmaller thari, the objective func-

tion about the inter-subband correlation for minimizateam be formulated as

(I)corr =1-7. (30)

For the proposed design of the GDFT prototype filter, thenottion of py[n] is formulated
in (31), which minimises both the stopband enerfgygiven in (19) and®..;, constrained by the

frequency response at the passband defined in (26)

i 1—a)FE - subjectto E. 31
h[n}glglg% (1 - a)Es + a- Peorr j p < €p (31)

wheree, is a small value set to be the upper limit of the passbandrtistoerror £, and« is the

weighting factor between stopband attenuatiyrand subband correlatiobcr.

11



Equation (31) is similar to the design of cosine-modulatkerfbanks proposed in [21]. However,
for the reason stated in the previous section, the origiRatéhdition is replaced by a soft constraint
on the passband response of the prototype filter. As a rdbeltaliasing error is expected to be
reduced significantly by replacing the cosine modulatiothv@DFT modulation, which translates

into further increased inter-subband correlation, sodhnamproved performance can be obtained.

Moreover, for the two components in the cost function of theppsed design, if we want to
increase the level of cross-correlation, the stopbandwdtéon for the designed prototype filter has
to be smaller, which may increase the aliasing level aftevrd@ampling and as a result reduce the
cross-correlation between the adjacent subbands aftensdéomapling. On the other hand, smaller
attenuation at the stopband also undermines the assuntptibafter subband decomposition, the
convolutive mixing problem has been transformed into atamaneous one. One important note is
that, even if we have the same PR condition, the same stogtamiation and the same overlapped
area between adjacent subbands as the existing designwopwsed method will at least have an
effect of re-distributing the correlation value among elifint time lags and focusing the overall
correlation at a specific time lag, so that we can use thelatior at that time lag for more effective

permutation alignment.

3.5 Discussions

One issue with the choice of the oversampled GDFT filter b values ofl\/ andNV. In theory,
there are mainly two factors to consider in determining thkies ofAf and N. First, they should
be large enough to make sure that after subband decompeditie convolutive mixing problem
has been transformed into a series of instantaneous mixiiggms. In this case, their values
are actually determined by the complexity of the unknowitbard mixing filters in the original
convolutive mixing problem. However, a large value faf and IV increases the computational
complexity of the system and reduces the data length of thendposed subband signals, with the
latter one leading to less accurate estimation of theiistited and cross-correlation, and as a result a
degraded overall performance. Itis extremely difficulyat impossible, to determine their optimum
values and for now they can only be chosen empirically. Tiheesaroblem exists in the frequency-

domain BSS method, i.e., how to choose the right length oDfRE operation.

For oversampled GDFT filter banks, another problem is the b&tween\/ andN. A larger ratio
M/N gives more overlapped area between adjacent subbandsas Imore degrees of freedom

for cross-correlation maximization. However, this alssufes in higher computational complexity

12



M =64 N =148

ws = 1.967/N | w, = 1.971/M

I=0o0r2 L, = 384

e =103 a=10"2

N,=4

Table 1: Parameters of the design example for the proposedtfdnks.

for the same value aof/.

4 Design Examples and Simulation Results

4.1 Design examples

Two example prototype filters are designed based on the peofmethod with the design parameters
listed in Table 1 and the resultant frequency response slimWigs. 5(b) and 5(c). As for the M-
CCA based joint BSS, the inter-subband correlation is ¢aied based on the zero lag, with= 0,

and for permutation alignment, lags around zeros are ceresid with] = 2.

For comparison, the prototype filter for conventional GDH{Efibanks ofA/ = 64 and N = 48
is also designed, and the frequency response is shown irbfg. The frequency response in Fig.
5(c) has a small ripple around the passband edge, as the PRi@oiis relaxed. In return, it has a
wider bandwidth for signal to pass and a steeper transitiom before reaching the aliasing margin
atw/N. The improvement due to the new design can be evaluated tylatihg the signal to aliasing
ratio (SAR) [30], given by

sAR— o ‘PO(QJ:W)E o (32)
ST | Poei) [ de

The proposed prototype filter achieves a rati@@B0 dB while the conventional one is 26.99 dB.

4.2 Joint BSS using M-CCA

First, we consider a BSS problem with three speakers and theivers. Nine randomly generated
FIR filters are used for mixing, as shown in Fig. 6 and thre@nd®d speech signals are used as
source signals, sampled &tKHz. We attempt to solve the problem by using the subbanddbase

M-CCA algorithm explained in Section 2.3.
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During the experiments, the oversampled GDFT filter bankh %4 channels and a decimation
ratio of 48 are employed with the optimised prototype filfEne iterative M-CCA algorithm is ap-
plied to the 64 subband signals, which uses the SSQCORenitieroptimise the correlation between
different data sets. For each subband,»a3 separation matrix and three separated subband signals
are then obtained. Unlike the existing frequency-domaisulitband-based BSS, these separation

matrices are optimised jointly, and post-processing fompgation alignment is not required.

Since the mixing filters and source signals are availablevafuation, we can obtain the overall
impulse responsé|n| of the mixing-demixing system, which is shown in Fig. 7, ahd butputs are

given by
K=3

yjln| = tjiln]-siln] i=1,2,3, (33)

i=

[y

wheret;;[n] is the (j,4)th entry of T[n] andy;[n] is the j—th output. As the magnitudes A,
Aoy and A3z are much larger than the others, and have a similar shape anpllse, the resultant

outputs are well separated signals corresponding to tke gource signals.

For comparison, we also used the filter banks whose protdtigpeis designed by the conven-
tional method [28]. We can calculate the output SIR for eadput and a comparison of the results
is shown in Fig. 8, where an improvement for the optimisedesyscan be observed. Due to the in-
crease in mutual information between subbands, the M-C@érithm has provided more accurate
estimation of the linear relationship between subband, datd avoided the permutation misalign-
ment problem, which occurred at the 3rd output using the eotional filter banks and adversely

affected the overall separation result.

4.3 Natural gradient algorithm with permutation alignment

In this simulation, two sets of mixing filters are randomlyngeated, which are 10 taps long and 20
taps long, respectively, as shown in Figs. 9(a) and 9(b).cbneentional GDFT filter banks and the
proposed GDFT filter banks in Simulation | are applied fortsarm decomposition and same speech

signals are used as the sources.

Figs. 10 and 11 show the subband SIR result when the mixiregdittf length= 10 is used,
and both the proposed and the conventional GDFT filter baals produced good results at lower
frequencies, where an SIR level aroundB is achieved. However, as we can see at subbard21
of the conventional system, misalignment occurs and théaub SIRs for the three outputs are

(—20.1,5.24, —4.72) dB. Comparing the separated signals with the source sigmad can obtain
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the SIRs for correct permutation, which af&.05, 5.24,2.07) dB. When the subband SIRs are at
a low level, i.e.,2.07 dB, a misalignment occurs because of the presence of irgade signals.
Similarly for m = 22, the subband SIRs are-£3.09. — 7.07, —20.20) dB and the fixed SIRs are

(21.199.401.42) dB, which caused a second misalignment because of the sawer.

In contrast, when the proposed design is employed, the adif®i&R has changed t64.75, 7.63, 4.2)
dB and (7.07,6.69, 2.84) dB; however, correct alignment is obtained as the propdssin can en-

hance the inter-subband correlation between matched sdidgnals.

In Figs. 12 and 13, mixing filters of length 20 are used for the convolutive mixtures. As the
mixing filters become longer with a more complicated frequyenresponse, the separation is expected
to become more difficult as the number of estimated coeffisibas been increased. This change
can be observed from the two figures, as the subband sepapatitormance becomes worse and
more misalignments are presented for both GDFT filter bartkst the conventional design, the
misalignment appeared &tn = 5,9, 14, 15,23, 40, 48,49, 54, 58), and permutation errors propa-
gate between these subbands, which has severely distbdgestparation results. However, as the
proposed design is more robust to the reduction of subbaRdrBikalignment has only occurred at
subbands with lowest SIR (at = 15, 23,40, 48). Since the first misalignment occurred at a higher
subband, and the energy of speech signals is normally fdarstwer frequencies, the impact from

the permutation errors is less significant.

The fullband overall SIR values can be obtained by passiegtibband componemg‘,”) . 5§m>
and tg”) . s§m) through the synthesis filters and calculating the ratiordfie summation. Table 2

summarises the results of Simulation | and Table 2 sumnsattigeresults of Simulation II.

The number of misalignments and errors is obtained for eanhlation. Cosine-modulation
without correlation optimization produced the worst résuknd by introducing correlation optimiza-
tion, the number of permutation errors is largely reducelde GDFT filter banks have much better
separation results, which reveals that the subband aiasimponents have a significant negative

impact on the performance of the subband-based BSS.

The proposed and the conventional GDFT filter banks haveaimgsults when the subband
SIRs are high, where permutation alignment can be correctiyeved. However, when separation
difficulty increases, which is usually because of the charigethe source signals or the mixing
filters, permutation misalignment may occur. For the pregodesign, it is quite robust and correct

alignment can still be obtained even when the subband SiE&tadtwvely low.
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The permutation error is a good performance indicator oftilgband-based BSS, and when the
subband system has zero permutation error, the BSS algociim reach its full potential; while the
proposed prototype filter is designed to improve the alignmesult, misalignment may still occur
at a few subbands. Although occurrence of the misalignnsgmaiidly predicted and a few misalign-
ment may propagate to a larger number of subbands, the o gesign can generally improve the
overall separation result, and if the misalignment occursigher frequencies, the majority of the

source speech signals can still be separated.

Table 2: Results of simulation I; averaged fullband SIR galtor each output, the number of

permutation errors and permutation misalignments.

SIR1 (dB) | SIR2 (dB) | permutation error misalignment
conventional CMFB 21 -1.9 26/64 17/64
correlation maximized CMFB  12.19 6.1 0 0
conventional GDFT 14.26 10.5 20/64 2/64
proposed GDFT 20.18 10.8 0 0

Table 3: Results of simulation 1I: averaged fullband SIRresl for each output, the number of

permutation errors and permutation misalignments.

SIR1 (dB) | SIR2 (dB) | SIR3 (dB) | perm error| misalignment
mixing tap = 10
conventional GDFT| 12.55 15.1 17.9 24/64 4/64
proposed GDFT 204 16.8 17.24 0 0
mixing tap = 20
conventional GDFT  2.98 1.99 13.22 20/64 10/64
proposed GDFT 12.56 6.33 13.53 16/64 2/64

5 Conclusions

In this paper, an oversampled GDFT filter banks design withetation optimization has been pro-
posed. By relaxing the traditional PR condition, we can foon stopband energy minimization
and inter-subband correlation optimization. Meanwhildlsmnd based separation using the M-CCA

algorithm and the natural gradient algorithm has beenetij@vhich can be used to solve the convo-
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lutive mixing BSS problem. As both methods rely on good ksiélbband correlation, an improved
performance has been achieved by the proposed design foBB& algorithms, as demonstrated by

our simulations.
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Figure 10: The subband SIR for the three outputs using theetional oversampled GDFT

modulated filter banks for mixing filters of length 10.
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Figure 11: The subband SIR for the three outputs using theogex oversampled GDFT

modulated filter banks for mixing filters of length 10.
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Figure 12: The subband SIR for the three outputs using theetional oversampled GDFT filter

banks for mixing filters of lengtk= 20.
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Figure 13: The subband SIR for the three outputs using theogex oversampled GDFT filter
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