5,672 research outputs found
Research into the feasibility of thin metal and oxide film capacitors Interim scientific report
Feasibility of thin metal and oxide film capacitor
Research into the feasibility of thin metal and oxide film capacitors
Feasibility of thin metal and oxide film capacitor
Study of the technique of stellar occultation
The results are reported of a study of the stellar occultation technique for measuring the composition of the atmosphere. The intensity of starlight was monitored during the occultation using the Wisconsin stellar ultraviolet photometers aboard the Orbiting Astronomical Observatory (OAO-A2). A schematic diagram of an occultation is shown where the change in intensity at a given wavelength is illustrated. The vertical projection of the attenuation region is typically 60 km deep for molecular oxygen and 30 km deep for ozone. Intensity profiles obtained during various occultations were analyzed by first determining the tangential columm density of the absorbing gases, and then Abel inverting the column densities to obtain the number density profile. Errors are associated with each step in the inversion scheme and have been considered as an integral part of this study
Neural NILM: Deep Neural Networks Applied to Energy Disaggregation
Energy disaggregation estimates appliance-by-appliance electricity
consumption from a single meter that measures the whole home's electricity
demand. Recently, deep neural networks have driven remarkable improvements in
classification performance in neighbouring machine learning fields such as
image classification and automatic speech recognition. In this paper, we adapt
three deep neural network architectures to energy disaggregation: 1) a form of
recurrent neural network called `long short-term memory' (LSTM); 2) denoising
autoencoders; and 3) a network which regresses the start time, end time and
average power demand of each appliance activation. We use seven metrics to test
the performance of these algorithms on real aggregate power data from five
appliances. Tests are performed against a house not seen during training and
against houses seen during training. We find that all three neural nets achieve
better F1 scores (averaged over all five appliances) than either combinatorial
optimisation or factorial hidden Markov models and that our neural net
algorithms generalise well to an unseen house.Comment: To appear in ACM BuildSys'15, November 4--5, 2015, Seou
A Correction to the Standard Galactic Reddening Map: Passive Galaxies as Standard Crayons
We present corrections to the Schlegel, Finkbeiner, Davis (SFD98) reddening
maps over the Sloan Digital Sky Survey northern Galactic cap area. To find
these corrections, we employ what we dub the "standard crayon" method, in which
we use passively evolving galaxies as color standards by which to measure
deviations from the reddening map. We select these passively evolving galaxies
spectroscopically, using limits on the H alpha and O II equivalent widths to
remove all star-forming galaxies from the SDSS main galaxy catalog. We find
that by correcting for known reddening, redshift, color-magnitude relation, and
variation of color with environmental density, we can reduce the scatter in
color to below 3% in the bulk of the 151,637 galaxies we select. Using these
galaxies we construct maps of the deviation from the SFD98 reddening map at 4.5
degree resolution, with 1-sigma error of ~ 1.5 millimagnitudes E(B-V). We find
that the SFD98 maps are largely accurate with most of the map having deviations
below 3 millimagnitudes E(B-V), though some regions do deviate from SFD98 by as
much as 50%. The maximum deviation found is 45 millimagnitudes in E(B-V), and
spatial structure of the deviation is strongly correlated with the observed
dust temperature, such that SFD98 underpredicts reddening in regions of low
dust temperature. Our maps of these deviations, as well as their errors, are
made available to the scientific community as supplemental correction to SFD98
at http://www.peekandgraves2010.com.Comment: 12 pages, 7 figures. Accepted to the ApJ. Reddening correction maps
and associated software can be found at http://www.peekandgraves2010.co
The Peak Brightness and Spatial Distribution of AGB Stars Near the Nucleus of M32
The bright stellar content near the center of the Local Group elliptical
galaxy M32 is investigated with 0.12 arcsec FWHM H and K images obtained with
the Gemini Mauna Kea telescope. Stars with K = 15.5, which are likely evolving
near the tip of the asymptotic giant branch (AGB), are resolved to within 2
arcsec of the nucleus, and it is concluded that the peak stellar brightness
near the center of M32 is similar to that in the outer regions of the galaxy.
Moreover, the projected density of bright AGB stars follows the visible light
profile to within 2 arcsec of the nucleus, indicating that the brightest stars
are well mixed throughout the galaxy. Thus, there is no evidence for an age
gradient, and the radial variations in spectroscopic indices and ultraviolet
colors that have been detected previously must be due to metallicity and/or
some other parameter. We suggest that either the bright AGB stars formed as
part of a highly uniform and coherent galaxy-wide episode of star formation, or
they originated in a separate system that merged with M32.Comment: 9 pages of text, 3 figures. ApJ (Letters) in pres
Assessing the sublethal impacts of anthropogenic stressors on fish: an energy‐budget approach
Fish are increasingly exposed to anthropogenic stressors from human developments and activities such as agriculture, urbanization, pollution and fishing. Lethal impacts of these stressors have been studied but the potential sublethal impacts, such as behavioural changes or reduced growth and reproduction, have often been overlooked. Unlike mortality, sublethal impacts are broad and difficult to quantify experimentally. As a result, sublethal impacts are often ignored in regulatory frameworks and management decisions. Building on established fish bioenergetic models, we present a general method for using the population consequences of disturbance framework to investigate how stressors influence ecologically relevant life processes of fish. We partition impact into the initial energetic cost of attempts to escape from the stressor, followed by the energetic impacts of any injury or behavioural change, and their consequent effects on life processes. As a case study, we assess the sublethal effects of catch and release angling for the European sea bass (Dicentrachus labrax, Moronidae), a popular target species for recreational fishers. The energy budget model described is not intended to replace existing experimental approaches but does provide a simple way to account for sublethal impacts in assessment of the impact of recreational fisheries and aid development of robust management approaches. There is potential to apply our energy budget approach to investigate a broad range of stressors and cumulative impacts for many fish species while also using individual‐based models to estimate population‐level impacts
Compact x-ray source based on burst-mode inverse Compton scattering at 100 kHz
A design for a compact x-ray light source (CXLS) with flux and brilliance
orders of magnitude beyond existing laboratory scale sources is presented. The
source is based on inverse Compton scattering of a high brightness electron
bunch on a picosecond laser pulse. The accelerator is a novel high-efficiency
standing-wave linac and RF photoinjector powered by a single ultrastable RF
transmitter at x-band RF frequency. The high efficiency permits operation at
repetition rates up to 1 kHz, which is further boosted to 100 kHz by operating
with trains of 100 bunches of 100 pC charge, each separated by 5 ns. The entire
accelerator is approximately 1 meter long and produces hard x-rays tunable over
a wide range of photon energies. The colliding laser is a Yb:YAG solid-state
amplifier producing 1030 nm, 100 mJ pulses at the same 1 kHz repetition rate as
the accelerator. The laser pulse is frequency-doubled and stored for many
passes in a ringdown cavity to match the linac pulse structure. At a photon
energy of 12.4 keV, the predicted x-ray flux is
photons/second in a 5% bandwidth and the brilliance is in pulses with RMS pulse
length of 490 fs. The nominal electron beam parameters are 18 MeV kinetic
energy, 10 microamp average current, 0.5 microsecond macropulse length,
resulting in average electron beam power of 180 W. Optimization of the x-ray
output is presented along with design of the accelerator, laser, and x-ray
optic components that are specific to the particular characteristics of the
Compton scattered x-ray pulses.Comment: 25 pages, 24 figures, 54 reference
Effect of periodic parametric excitation on an ensemble of force-coupled self-oscillators
We report the synchronization behavior in a one-dimensional chain of
identical limit cycle oscillators coupled to a mass-spring load via a force
relation. We consider the effect of periodic parametric modulation on the final
synchronization states of the system. Two types of external parametric
excitations are investigated numerically: periodic modulation of the stiffness
of the inertial oscillator and periodic excitation of the frequency of the
self-oscillatory element. We show that the synchronization scenarios are ruled
not only by the choice of parameters of the excitation force but depend on the
initial collective state in the ensemble. We give detailed analysis of
entrainment behavior for initially homogeneous and inhomogeneous states. Among
other results, we describe a regime of partial synchronization. This regime is
characterized by the frequency of collective oscillation being entrained to the
stimulation frequency but different from the average individual oscillators
frequency.Comment: Comments and suggestions are welcom
Genetic Sequencing Methodologies to Assess Human Contributions of Fecal Coliforms to a Freshwater Receiving Stream
2012 S.C. Water Resources Conference - Exploring Opportunities for Collaborative Water Research, Policy and Managemen
- …