506 research outputs found

    Anisotropic and strong negative magneto-resistance in the three-dimensional topological insulator Bi2Se3

    Get PDF
    We report on high-field angle-dependent magneto-transport measurements on epitaxial thin films of Bi2Se3, a three-dimensional topological insulator. At low temperature, we observe quantum oscillations that demonstrate the simultaneous presence of bulk and surface carriers. The magneto- resistance of Bi2Se3 is found to be highly anisotropic. In the presence of a parallel electric and magnetic field, we observe a strong negative longitudinal magneto-resistance that has been consid- ered as a smoking-gun for the presence of chiral fermions in a certain class of semi-metals due to the so-called axial anomaly. Its observation in a three-dimensional topological insulator implies that the axial anomaly may be in fact a far more generic phenomenon than originally thought.Comment: 6 pages, 4 figure

    Magneto-optics of massive Dirac fermions in bulk Bi2Se3

    Full text link
    We report on magneto-optical studies of Bi2Se3, a representative member of the 3D topological insulator family. Its electronic states in bulk are shown to be well described by a simple Dirac-type Hamiltonian for massive particles with only two parameters: the fundamental bandgap and the band velocity. In a magnetic field, this model implies a unique property - spin splitting equal to twice the cyclotron energy: Es = 2Ec. This explains the extensive magneto-transport studies concluding a fortuitous degeneracy of the spin and orbital split Landau levels in this material. The Es = 2Ec match differentiates the massive Dirac electrons in bulk Bi2Se3 from those in quantum electrodynamics, for which Es = Ec always holds.Comment: 5 pages, 3 figures and Supplementary materials, to be published in Physical Review Letter

    Universal statistics of non-linear energy transfer in turbulent models

    Full text link
    A class of shell models for turbulent energy transfer at varying the inter-shell separation, λ\lambda, is investigated. Intermittent corrections in the continuous limit of infinitely close shells (λ→1\lambda \rightarrow 1) have been measured. Although the model becomes, in this limit, non-intermittent, we found universal aspects of the velocity statistics which can be interpreted in the framework of log-poisson distributions, as proposed by She and Waymire (1995, Phys. Rev. Lett. 74, 262). We suggest that non-universal aspects of intermittency can be adsorbed in the parameters describing statistics and properties of the most singular structure. On the other hand, universal aspects can be found by looking at corrections to the monofractal scaling of the most singular structure. Connections with similar results reported in other shell models investigations and in real turbulent flows are discussed.Comment: 4 pages, 2 figures available upon request to [email protected]

    Cardiovascular-renal axis disorders in the domestic dog and cat: a veterinary consensus statement

    Get PDF
    OBJECTIVES There is a growing understanding of the complexity of interplay between renal and cardiovascular systems in both health and disease. The medical profession has adopted the term "cardiorenal syndrome" (CRS) to describe the pathophysiological relationship between the kidney and heart in disease. CRS has yet to be formally defined and described by the veterinary profession and its existence and importance in dogs and cats warrant investigation. The CRS Consensus Group, comprising nine veterinary cardiologists and seven nephrologists from Europe and North America, sought to achieve consensus around the definition, pathophysiology, diagnosis and management of dogs and cats with "cardiovascular-renal disorders" (CvRD). To this end, the Delphi formal methodology for defining/building consensus and defining guidelines was utilised. METHODS Following a literature review, 13 candidate statements regarding CvRD in dogs and cats were tested for consensus, using a modified Delphi method. As a new area of interest, well-designed studies, specific to CRS/CvRD, are lacking, particularly in dogs and cats. Hence, while scientific justification of all the recommendations was sought and used when available, recommendations were largely reliant on theory, expert opinion, small clinical studies and extrapolation from data derived from other species. RESULTS Of the 13 statements, 11 achieved consensus and 2 did not. The modified Delphi approach worked well to achieve consensus in an objective manner and to develop initial guidelines for CvRD. DISCUSSION The resultant manuscript describes consensus statements for the definition, classification, diagnosis and management strategies for veterinary patients with CvRD, with an emphasis on the pathological interplay between the two organ systems. By formulating consensus statements regarding CvRD in veterinary medicine, the authors hope to stimulate interest in and advancement of the understanding and management of CvRD in dogs and cats. The use of a formalised method for consensus and guideline development should be considered for other topics in veterinary medicine

    Supersonic turbulence and structure of interstellar molecular clouds

    Get PDF
    The interstellar medium (ISM) provides a unique laboratory for highly supersonic, driven hydrodynamics turbulence. We present a theory of such turbulence, confirm it by numerical simulations, and use the results to explain observational properties of interstellar molecular clouds, the regions where stars are born.Comment: 5 pages, 3 figures include

    ICEF2007-1768 ACTIVE AIR CONTROL SYSTEM DEVELOPMENT USING CHARGE AIR INTEGRATED MANIFOLD ENGINE NUMERICAL SIMULATION (CAIMENS)

    Get PDF
    ABSTRACT The natural gas transmission industry integrates turbochargers into the engine system to strategically increase airflow for the purpose of decreasing pollutant emissions, such as Nitrogen Oxide (NO X ). Regulations are expected to be tightened in the coming years, forcing transmission companies to look past turbochargers for compliance. The solution to further decreasing emissions lies not in further retrofit, but focusing on the physics of the current system. The flow rate physics of the intake and exhaust manifolds impede equal distribution of air from the turbocharger to each cylinder. Imbalance in airflow creates a discontinuity in the trapped equivalence ratio from cylinder to cylinder. The trapped equivalence ratio is directly proportional to NO X production and a function of the fuel flow rate, airflow rate, and, in two-stroke cycle engines, the scavenging efficiency. Only when these three characteristics are balanced cylinder to cylinder will the combustion and the NO X production in each cylinder be equal. The engine NO X production will be disproportionately high if even one cylinder operates less lean relative to the other cylinders. Balancing the NO x production between cylinders can lower the overall NO x production of the engine. This paper reports on an investigation into the transient, compressible flow physics that impact the trapped equivalence ratio. A comprehensive, variable geometry, multi-cylinder Turbocharger-Reciprocating Engine Computer Simulation (T-RECS) has been developed to illustrate the effect of airflow imbalance on an engine. A new model, the Charge Air Integrated Manifold Engine Numerical Simulation (CAIMENS), is a manifold flow model coupled with the T-RECS engine processor that uses an integrated set of fundamental principles to determine the crank angle-resolved pressure, temperature, burned and unburned mass fractions, and gas exchange rates for the cylinder. CAIMENS has the ability to show the transient impact of one cylinder firing on each successive cylinder. The pulsation model also describes the impact of manifold pressure drop on incylinder peak pressure and the pressure wave introduced to the intake manifold by uncovering the intake ports. CAIMENS provides the information necessary to quantify the impact of airflow imbalance, and allows for the visualization of the engine system before and after airflow correction. The model shows that not only does the manifold pressure drop have a significant impact on the in-cylinder peak pressure, but it also has an impact on the pressure wave introduced to the intake manifold as the ports are opened. Also, each cylinder has a considerable impact on the airflow into each successive cylinder

    Variability and multi-periodic oscillations in the X-ray light curve of the classical nova V4743 Sgr

    Full text link
    The classical nova V4743 Sgr was observed with XMM-Newton for about 10 hours on April 4 2003, 6.5 months after optical maximum. At this time, this nova had become the brightest supersoft X-ray source ever observed. We present the results of a time series analysis performed on the X-ray light curve obtained in this observation, and in a previous shorter observation done with Chandra 16 days earlier. Intense variability, with amplitude as large as 40% of the total flux, was observed both times. Similarities can be found between the two observations in the structure of the variations. Most of the variability is well represented as a combination of oscillations at a set of discrete frequencies lower than 1.7 mHz. At least five frequencies are constant over the 16 day time interval between the two observations. We suggest that a periods in the power spectrum of both light curves at the frequency of 0.75 mHz and its first harmonic are related to the spin period of the white dwarf in the system, and that other observed frequencies are signatures of nonradial white dwarf pulsations. A possible signal with a 24000 sec period is also found in the XMM-Newton light curve: a cycle and a half are clearly identified. This period is consistent with the 24278 s periodicity discovered in the optical light curve of the source and thought to be the orbital period of the nova binary system.Comment: In press in Monthly Notices of the Royal Astronomical Societ

    Observations of the pulsating subdwarf B star Feige 48: Constraints on evolution and companions

    Get PDF
    Since pulsating subdwarf B (sdBV or EC14026) stars were first discovered (Kilkenny et al, 1997), observational efforts have tried to realize their potential for constraining the interior physics of extreme horizontal branch (EHB) stars. Difficulties encountered along the way include uncertain mode identifications and a lack of stable pulsation mode properties. Here we report on Feige 48, an sdBV star for which follow-up observations have been obtained spanning more than four years, which shows some stable pulsation modes. We resolve the temporal spectrum into five stable pulsation periods in the range 340 to 380 seconds with amplitudes less than 1%, and two additional periods that appear in one dataset each. The three largest amplitude periodicities are nearly equally spaced, and we explore the consequences of identifying them as a rotationally split l=1 triplet by consulting with a representative stellar model. The general stability of the pulsation amplitudes and phases allows us to use the pulsation phases to constrain the timescale of evolution for this sdBV star. Additionally, we are able to place interesting limits on any stellar or planetary companion to Feige 48.Comment: accepted for publication in MNRA

    Discovery (theoretical prediction and experimental observation) of a large-gap topological-insulator class with spin-polarized single-Dirac-cone on the surface

    Get PDF
    Recent theories and experiments have suggested that strong spin-orbit coupling effects in certain band insulators can give rise to a new phase of quantum matter, the so-called topological insulator, which can show macroscopic entanglement effects. Such systems feature two-dimensional surface states whose electrodynamic properties are described not by the conventional Maxwell equations but rather by an attached axion field, originally proposed to describe strongly interacting particles. It has been proposed that a topological insulator with a single spin-textured Dirac cone interfaced with a superconductor can form the most elementary unit for performing fault-tolerant quantum computation. Here we present an angle-resolved photoemission spectroscopy study and first-principle theoretical calculation-predictions that reveal the first observation of such a topological state of matter featuring a single-surface-Dirac-cone realized in the naturally occurring Bi2_2Se3_3 class of materials. Our results, supported by our theoretical predictions and calculations, demonstrate that undoped compound of this class of materials can serve as the parent matrix compound for the long-sought topological device where in-plane surface carrier transport would have a purely quantum topological origin. Our study further suggests that the undoped compound reached via n-to-p doping should show topological transport phenomena even at room temperature.Comment: 3 Figures, 18 pages, Submitted to NATURE PHYSICS in December 200

    Universal intermittent properties of particle trajectories in highly turbulent flows

    Get PDF
    We present a collection of eight data sets, from state-of-the-art experiments and numerical simulations on turbulent velocity statistics along particle trajectories obtained in different flows with Reynolds numbers in the range Rλ∈[120:740]R_\lambda \in [120:740]. Lagrangian structure functions from all data sets are found to collapse onto each other on a wide range of time lags, revealing a universal statistics, and calling for a unified theoretical description. Parisi-Frisch Multifractal theory, suitable extended to the dissipative scales and to the Lagrangian domain, is found to capture intermittency of velocity statistics over the whole three decades of temporal scales here investigated.Comment: 5 pages, 1 figure; content changed, references update
    • …
    corecore