6,346 research outputs found

    Fluctuation of the Initial Conditions and Its Consequences on Some Observables

    Full text link
    We show effects of the event-by-event fluctuation of the initial conditions (IC) in hydrodynamic description of high-energy nuclear collisions on some observables. Such IC produce not only fluctuations in observables but, due to their bumpy structure, several non-trivial effects appear. They enhance production of isotropically distributed high-pT particles, making v2 smaller there. Also, they reduce v2 in the forward and backward regions where the global matter density is smaller, so where such effects become more efficacious. They may also produce the so-called ridge effect in the two large-pT particle correlation.Comment: 6 pages, 6 figures, presented at the IV Workshop on Particle Correlations and Femtoscopy (WPCF2008), Krakow, Poland, 11-14 Sep 200

    Slavnov-Taylor Parameterization for the Quantum Restoration of BRST Symmetries in Anomaly-Free Gauge Theories

    Get PDF
    It is shown that the problem of the recursive restoration of the Slavnov-Taylor (ST) identities at the quantum level for anomaly-free gauge theories is equivalent to the problem of parameterizing the local approximation to the quantum effective action in terms of ST functionals, associated with the cohomology classes of the classical linearized ST operator. The ST functionals of dimension <=4 correspond to the invariant counterterms, those of dimension >4 generate the non-symmetric counterterms upon projection on the action-like sector. At orders higher than one in the loop expansion there are additional contributions to the non-invariant counterterms, arising from known lower order terms. They can also be parameterized by using the ST functionals. We apply the method to Yang-Mills theory in the Landau gauge with an explicit mass term introduced in a BRST-invariant way via a BRST doublet. Despite being non-unitary, this model provides a good example where the method devised in the paper can be applied to derive the most general solution for the action-like part of the quantum effective action, compatible with the fulfillment of the ST identities and the other relevant symmetries of the model, to all orders in the loop expansion. The full dependence of the solution on the normalization conditions is given.Comment: 23 pages. Final version published in the journa

    Vertex Operators for Closed Superstrings

    Get PDF
    We construct an iterative procedure to compute the vertex operators of the closed superstring in the covariant formalism given a solution of IIA/IIB supergravity. The manifest supersymmetry allows us to construct vertex operators for any generic background in presence of Ramond-Ramond (RR) fields. We extend the procedure to all massive states of open and closed superstrings and we identify two new nilpotent charges which are used to impose the gauge fixing on the physical states. We solve iteratively the equations of the vertex for linear x-dependent RR field strengths. This vertex plays a role in studying non-constant C-deformations of superspace. Finally, we construct an action for the free massless sector of closed strings, and we propose a form for the kinetic term for closed string field theory in the pure spinor formalism.Comment: TeX, harvmac, amssym.tex, 41 pp; references adde

    The Melting of Carbonated Pelites from 70 to 700 km Depth

    Get PDF
    Phase assemblages, melting relations and melt compositions of a dry carbonated pelite (DG2) and a carbonated pelite with 1·1 wt % H2O (AM) have been experimentally investigated at 5·5-23·5 GPa and 1070-1550°C. The subsolidus mineralogies to 16 GPa contain garnet, clinopyroxene, coesite or stishovite, kyanite or corundum, phengite or potassium feldspar (≤8 GPa with and without H2O, respectively), and then K-hollandite, a Ti phase and ferroan dolomite/Mg-calcite or aragonite + ferroan magnesite at higher pressures. The breakdown of clinopyroxene at >16 GPa causes Na-rich Ca-carbonate containing up to 11 wt % Na2O to replace aragonite and leads to the formation of an Na-rich CO2 fluid. Further pressure increase leads to typical Transition Zone minerals such as the CAS phase and one or two perovskites, which completely substitute garnet at the highest investigated pressure (23·5 GPa). Melting at 5·5-23·5 GPa yields alkali-rich magnesio-dolomitic (DG2) to ferro-dolomitic (AM) carbonate melts at temperatures 200-350°C below the mantle geotherm, lower than for any other studied natural composition. Melting reactions are controlled by carbonates and alkali-hosting phases: to 16 GPa clinopyroxene remains residual, Na is compatible and the magnesio- to ferro-dolomitic carbonate melts have extremely high K2O/Na2O ratios. K2O/Na2O weight ratios decrease from 26-41 at 8 GPa to 1·2 at 16 GPa when K-hollandite expands its stability field with increasing pressure. At >16 GPa, Na is repartitioned between several phases, and again becomes incompatible as at <3 GPa, leading to Na-rich carbonate melts with K2O/Na2O ratios 1. This leaves the pressure interval of c. 4-15 GPa for ultrapotassic metasomatism. Comparison of the solidus with typical subducting slab-surface temperatures yields two distinct depths of probable carbonated pelite melting: at 6-9 GPa where the solidus has a negative Clapeyron slope between the intersection of the silicate and carbonate melting reactions at ∼5 GPa, and the phengite or potassium feldspar stability limit at ∼9 GPa. The second opportunity is related to possible slab deflection along the 660 km discontinuity, leading to thermal relaxation and partial melting of the fertile carbonated pelites, thus recycling sedimentary CO2, alkalis and other lithophile and strongly incompatible elements back into the mantl

    An Introduction to the Covariant Quantization of Superstrings

    Get PDF
    We give an introduction to a new approach to the covariant quantization of superstrings. After a brief review of the classical Green--Schwarz superstring and Berkovits' approach to its quantization based on pure spinors, we discuss our covariant formulation without pure spinor constraints. We discuss the relation between the concept of grading, which we introduced to define vertex operators, and homological perturbation theory, and we compare our work with recent work by others. In the appendices, we include some background material for the Green-Schwarz and Berkovits formulations, in order that this presentation be self contained.Comment: LaTex, 23 pp. Contribution to the Proceedings of the Workshop in String Theory, Leuven 2002, some references added and a comment on ref. [16

    Large ptp_t enhancement from freeze out

    Get PDF
    Freeze out of particles across three dimensional space-time hypersurface is discussed in a simple kinetic model. The final momentum distribution of emitted particles, for freeze out surfaces with space-like normal, shows a non-exponential transverse momentum spectrum. The slope parameter of the ptp_t distribution increases with increasing ptp_t, in agreement with recently measured SPS pion and hh^- spectra.Comment: 8 pages, 1 figure. Accepted for publication in Physics Letters

    Super D-branes from BRST Symmetry

    Full text link
    Recently a new formalism has been developed for the covariant quantization of superstrings. We study properties of Dp-branes and p-branes in this new framework, focusing on two different topics: effective actions and boundary states for Dp-branes. We present a derivation of the Wess-Zumino terms for super (D)p-branes using BRST symmetry. To achieve this we derive the BRST symmetry for superbranes, starting from the approach with/without pure spinors, and completely characterize the WZ terms as elements of the BRST cohomology. We also develope the boundary state description of Dp-branes by analyzing the boundary conditions for open strings in the completely covariant (i.e., without pure spinors) BRST formulation.Comment: 31 pp; journal version, expended discussion of D-brane pure spinor constraints in Section 2.

    Freeze-out in hydrodynamical models in relativistic heavy ion collisions

    Get PDF
    Freeze-out of particles across 3-dimensional space-time hypersurface with space-like normal is discussed in a simple kinetic model. The final momentum distribution of emitted particles shows a non-exponential transverse momentum spectrum, which is in quantitative agreement with recently measured SPS pion and hh^- spectra.Comment: 4 pages, 1 figure. Quark Matter'99 Proceeding

    Knots, Braids and BPS States in M-Theory

    Get PDF
    In previous work we considered M-theory five branes wrapped on elliptic Calabi-Yau threefold near the smooth part of the discriminant curve. In this paper, we extend that work to compute the light states on the worldvolume of five-branes wrapped on fibers near certain singular loci of the discriminant. We regulate the singular behavior near these loci by deforming the discriminant curve and expressing the singularity in terms of knots and their associated braids. There braids allow us to compute the appropriate string junction lattice for the singularity and,hence to determine the spectrum of light BPS states. We find that these techniques are valid near singular points with N=2 supersymmetry.Comment: 38 page

    Origin of Pure Spinor Superstring

    Full text link
    The pure spinor formalism for the superstring, initiated by N. Berkovits, is derived at the fully quantum level starting from a fundamental reparametrization invariant and super-Poincare invariant worldsheet action. It is a simple extension of the Green-Schwarz action with doubled spinor degrees of freedom with a compensating local supersymmetry on top of the conventional kappa-symmetry. Equivalence to the Green-Schwarz formalism is manifest from the outset. The use of free fields in the pure spinor formalism is justified from the first principle. The basic idea works also for the superparticle in 11 dimensions.Comment: 21 pages, no figure; v2: refs. adde
    corecore