115 research outputs found

    Méthode de Prédiction de la Capacité de Conservation des Semences

    Get PDF
    The invention relates to a method for the early evaluation of the preservation capacity of recently harvested seeds and/or of the resistance capacity thereof to an abiotic stress upon germination by quantifying L-isoaspartate residues in said seeds

    The actual impedance of non-reflecting boundary conditions : implications for the computation of resonators

    Get PDF
    Non-reflecting boundary conditions are essential elements in the computation of many compressible flows: such simulations are very sensitive to the treatment of acoustic waves at boundaries. Non-reflecting conditions allow acoustic waves to propagate through boundaries with zero or small levels of reflection into the domain. However, perfectly non-reflecting conditions must be avoided because they can lead to ill-posed problems for the mean flow. Various methods have been proposed to construct boundary conditions which can be sufficiently non-reflecting for the acoustic field while still making the mean-flow problem well posed. This paper analyses a widely-used technique for non-reflecting outlets (Rudy and Strikwerda, Poinsot and Lele). It shows that the correction introduced by these authors can lead to large reflection levels and non-physical resonant behaviors. A simple scaling is proposed to evaluate the relaxation coefficient used in theses methods for a non-reflecting outlet. The proposed scaling is tested for simple cases (ducts) both theoretically and numerically

    Plant Seed : A Pertinent Model to Study Aging Processes

    Get PDF
    Seeds are the major form of dispersal of plants in the environment. Seeds of many plant species are exceptionally adapted to harsh environmental conditions provided they are in a state of desiccation. Spectacular cases of seed longevity have been reported. It’s one of the singular case of pluricellular, differentiate eukaryotic organ able to survive several years in anhydrobiosis. Plant scientific community explore these fascinating aspects of seed aging thanks to the immense possibilities now offered to create/modify plants at a much faster rate and in a more accurate way than through classical and molecular genetic approaches and genomic tools. These investigations allowed unveiling seed specificities against aging processe

    Three-dimensional local anisotropy of velocity fluctuations in the solar wind

    Get PDF
    We analyse velocity fluctuations in the solar wind at magneto-fluid scales in two datasets, extracted from Wind data in the period 2005-2015, that are characterised by strong or weak expansion. Expansion affects measurements of anisotropy because it breaks axisymmetry around the mean magnetic field. Indeed, the small-scale three-dimensional local anisotropy of magnetic fluctuations ({\delta}B) as measured by structure functions (SF_B) is consistent with tube-like structures for strong expansion. When passing to weak expansion, structures become ribbon-like because of the flattening of SFB along one of the two perpendicular directions. The power-law index that is consistent with a spectral slope -5/3 for strong expansion now becomes closer to -3/2. This index is also characteristic of velocity fluctuations in the solar wind. We study velocity fluctuations ({\delta}V) to understand if the anisotropy of their structure functions (SF_V ) also changes with the strength of expansion and if the difference with the magnetic spectral index is washed out once anisotropy is accounted for. We find that SF_V is generally flatter than SF_B. When expansion passes from strong to weak, a further flattening of the perpendicular SF_V occurs and the small-scale anisotropy switches from tube-like to ribbon-like structures. These two types of anisotropy, common to SF_V and SF_B, are associated to distinct large-scale variance anisotropies of {\delta}B in the strong- and weak-expansion datasets. We conclude that SF_V shows anisotropic three-dimensional scaling similar to SF_B, with however systematic flatter scalings, reflecting the difference between global spectral slopes.Comment: accepted in MNRA

    The interplay between helicity and rotation in turbulence: implications for scaling laws and small-scale dynamics

    Get PDF
    Invariance properties of physical systems govern their behavior: energy conservation in turbulence drives a wide distribution of energy among modes, observed in geophysical or astrophysical flows. In ideal hydrodynamics, the role of helicity conservation (correlation between velocity and its curl, measuring departures from mirror symmetry) remains unclear since it does not alter the energy spectrum. However, with solid body rotation, significant differences emerge between helical and non-helical flows. We first outline several results, like the energy and helicity spectral distribution and the breaking of strict universality for the individual spectra. Using massive numerical simulations, we then show that small-scale structures and their intermittency properties differ according to whether helicity is present or not, in particular with respect to the emergence of Beltrami-core vortices (BCV) that are laminar helical vertical updrafts. These results point to the discovery of a small parameter besides the Rossby number; this could relate the problem of rotating helical turbulence to that of critical phenomena, through renormalization group and weak turbulence theory. This parameter can be associated with the adimensionalized ratio of the energy to helicity flux to small scales, the three-dimensional energy cascade being weak and self-similar

    Energy spectrum of turbulent fluctuations in boundary driven reduced magnetohydrodynamics

    Full text link
    The nonlinear dynamics of a bundle of magnetic flux ropes driven by stationary fluid motions at their endpoints is studied, by performing numerical simulations of the magnetohydrodynamic (MHD) equations. The development of MHD turbulence is shown, where the system reaches a state that is characterized by the ratio between the Alfven time (the time for incompressible MHD waves to travel along the field lines) and the convective time scale of the driving motions. This ratio of time scales determines the energy spectra and the relaxation toward different regimes ranging from weak to strong turbulence. A connection is made with phenomenological theories for the energy spectra in MHD turbulence.Comment: Published in Physics of Plasma

    Hydrodynamic and magnetohydrodynamic computations inside a rotating sphere

    Get PDF
    Numerical solutions of the incompressible magnetohydrodynamic (MHD) equations are reported for the interior of a rotating, perfectly-conducting, rigid spherical shell that is insulator-coated on the inside. A previously-reported spectral method is used which relies on a Galerkin expansion in Chandrasekhar-Kendall vector eigenfunctions of the curl. The new ingredient in this set of computations is the rigid rotation of the sphere. After a few purely hydrodynamic examples are sampled (spin down, Ekman pumping, inertial waves), attention is focused on selective decay and the MHD dynamo problem. In dynamo runs, prescribed mechanical forcing excites a persistent velocity field, usually turbulent at modest Reynolds numbers, which in turn amplifies a small seed magnetic field that is introduced. A wide variety of dynamo activity is observed, all at unit magnetic Prandtl number. The code lacks the resolution to probe high Reynolds numbers, but nevertheless interesting dynamo regimes turn out to be plentiful in those parts of parameter space in which the code is accurate. The key control parameters seem to be mechanical and magnetic Reynolds numbers, the Rossby and Ekman numbers (which in our computations are varied mostly by varying the rate of rotation of the sphere) and the amount of mechanical helicity injected. Magnetic energy levels and magnetic dipole behavior are exhibited which fluctuate strongly on a time scale of a few eddy turnover times. These seem to stabilize as the rotation rate is increased until the limit of the code resolution is reached.Comment: 26 pages, 17 figures, submitted to New Journal of Physic

    Transition to Chaos in a Shell Model of Turbulence

    Full text link
    We study a shell model for the energy cascade in three dimensional turbulence at varying the coefficients of the non-linear terms in such a way that the fundamental symmetries of Navier-Stokes are conserved. When a control parameter Ï”\epsilon related to the strength of backward energy transfer is enough small, the dynamical system has a stable fixed point corresponding to the Kolmogorov scaling. This point becomes unstable at Ï”=0.3843...\epsilon=0.3843... where a stable limit cycle appears via a Hopf bifurcation. By using the bi-orthogonal decomposition, the transition to chaos is shown to follow the Ruelle-Takens scenario. For Ï”>0.3953..\epsilon > 0.3953.. the dynamical evolution is intermittent with a positive Lyapunov exponent. In this regime, there exists a strange attractor which remains close to the Kolmogorov (now unstable) fixed point, and a local scaling invariance which can be described via a intermittent one-dimensional map.Comment: 16 pages, Tex, 20 figures available as hard cop

    Spontaneous non-steady magnetic reconnection within the solar environment

    Full text link
    This work presents a 2.5-dimensional simulation study of the instability of current-sheets located in a medium with a strong density variation along the current layer. The initial force-free configuration is observed to undergo a two-stage evolution consisting of an abrupt regime transition from a slow to a fast reconnection process leading the system to a final chaotic configuration. Yet, the onset of the fast phase is not determined by the presence of any anomalous enhancement in plasma's local resistivity, but rather is the result of a new mechanism discovered in Lapenta (2008)* and captured only when sufficient resolution is present. Hence, the effects of the global resistivity, the global viscosity and the plasma beta on the overall dynamics are considered. This mechanism allowing the transition from slow to fast reconnection provides a simple but effective model of several processes taking place within the solar atmosphere from the high chromosphere up to the low corona. In fact, the understanding of a spontaneous transition to a self-feeding fast reconnection regime as well as its macroscopic evolution is the first and fundamental step to produce realistic models of all those phenomena requiring fast (and high power) triggering events (* Lapenta G. 2008, Phys. Rev. Lett., 100, 235001).Comment: 29 pages, 10 figure

    MADOR: A NEW TOOL TO CALCULATE DECREASE OF EFFECTIVE DOSES IN HUMAN AFTER DTPA THERAPY

    Get PDF
    Abstract models have been developed to describe dissolution of Pu/Am/Cm after internal contamination by inhalation or wound, chelation of actinides by diethylene triamine penta acetic acid (DTPA) in different retention compartments and excretion of actinide-DTPA complexes. After coupling these models with those currently used for dose calculation, the modelling approach was assessed by fitting human data available in IDEAS database. Good fits were obtained for most studied cases, but further experimental studies are needed to validate some modelling hypotheses as well as the range of parameter values. From these first results, radioprotection tools are being developed: MAnagement of DOse Reduction after DTPA therapy
    • 

    corecore