717 research outputs found
The Hydrodynamics of Gamma-Ray Burst Remnants
This paper reports on the results of a numerical investigation designed to
address how the initially anisotropic appearance of a GRB remnant is modified
by the character of the circumburst medium and by the possible presence of an
accompanying supernova (SN). Axisymmetric hydrodynamical calculations of light,
impulsive jets propagating in both uniform and inhomogeneous external media are
presented, which show that the resulting dynamics of their remnants since the
onset of the non-relativistic phase is different from the standard self-similar
solutions. Because massive star progenitors are expected to have their close-in
surroundings modified by the progenitor winds, we consider both free winds and
shocked winds as possible external media for GRB remnant evolution. Abundant
confirmation is provided here of the important notion that the morphology and
visibility of GRB remnants are determined largely by their circumstellar
environments. For this reason, their detectability is highly biased in favor of
those with massive star progenitors; although, in this class of models, the
beamed component may be difficult to identify because the GRB ejecta is
eventually swept up by the accompanying SN. The number density of asymmetric
GRB remnants in the local Universe could be, however, far larger if they expand
in a tenuous interstellar medium, as expected for some short GRB progenitor
models. In these sources, the late size of the observable, asymmetric remnant
could extend over a wide, possibly resolvable angle and may be easier to
constrain directly.Comment: 10 pages, 12 figures, emulateapj style, submitted to Ap
Multiple synchrotron self-Compton modeling of gamma-ray flares in 3C 279
The correlation often observed in blazars between optical-to-radio outbursts
and gamma-ray flares suggests that the high-energy emission region shall be
co-spatial with the radio knots, several parsecs away from the central engine.
This would prevent the important contribution at high-energies from the Compton
scattering of seed photons from the accretion disk and the broad-line region
that is generally used to model the spectral energy distribution of
low-frequency peaking blazars. While a pure synchrotron self-Compton model has
so far failed to explain the observed gamma-ray emission of a flat spectrum
radio quasar like 3C 279, the inclusion of the effect of multiple
inverse-Compton scattering might solve the apparent paradox. Here, we present
for the first time a physical, self-consistent SSC modeling of a series of
shock-waves in the jet of 3C 279. We show that the analytic description of the
high-energy emission from multiple inverse-Compton scatterings in the
Klein-Nishina limit can fairly well account for the observed gamma-ray spectrum
of 3C 279 in flaring states.Comment: 6 pages, 3 figures, proceedings of "Beamed and Unbeamed Gamma-rays
from Galaxies", 11-15 April 2011, Finland. To be published in the Journal of
Physics: Conference Serie
Quantum particle displacement by a moving localized potential trap
We describe the dynamics of a bound state of an attractive -well
under displacement of the potential. Exact analytical results are presented for
the suddenly moved potential. Since this is a quantum system, only a fraction
of the initially confined wavefunction remains confined to the moving
potential. However, it is shown that besides the probability to remain confined
to the moving barrier and the probability to remain in the initial position,
there is also a certain probability for the particle to move at double speed. A
quasi-classical interpretation for this effect is suggested. The temporal and
spectral dynamics of each one of the scenarios is investigated.Comment: 5 pages, 6 figure
Spectra and Light Curves of GRB Afterglows
We performed accurate numerical calculations of angle-, time-, and
frequency-dependent radiative transfer for the relativistic motion of matter in
gamma-ray burst (GRB) models. Our technique for solving the transfer equation,
which is based on the method of characteristics, can be applied to the motion
of matter with a Lorentz factor up to 1000. The effect of synchrotron
self-absorption is taken into account. We computed the spectra and light curves
from electrons with a power-law energy distribution in an expanding
relativistic shock and compare them with available analytic estimates. The
behavior of the optical afterglows from GRB 990510 and GRB 000301c is discussed
qualitatively.Comment: 8 pages, 7 figure
Retinal metric: a stimulus distance measure derived from population neural responses
The ability of the organism to distinguish between various stimuli is limited
by the structure and noise in the population code of its sensory neurons. Here
we infer a distance measure on the stimulus space directly from the recorded
activity of 100 neurons in the salamander retina. In contrast to previously
used measures of stimulus similarity, this "neural metric" tells us how
distinguishable a pair of stimulus clips is to the retina, given the noise in
the neural population response. We show that the retinal distance strongly
deviates from Euclidean, or any static metric, yet has a simple structure: we
identify the stimulus features that the neural population is jointly sensitive
to, and show the SVM-like kernel function relating the stimulus and neural
response spaces. We show that the non-Euclidean nature of the retinal distance
has important consequences for neural decoding.Comment: 5 pages, 4 figures, to appear in Phys Rev Let
Stability of narrow beams in bulk Kerr-type nonlinear media
We consider (2+1)-dimensional beams, whose transverse size may be comparable
to or smaller than the carrier wavelength, on the basis of an extended version
of the nonlinear Schr\"{o}dinger equation derived from the Maxwell`s equations.
As this equation is very cumbersome, we also study, in parallel to it, its
simplified version which keeps the most essential term: the term which accounts
for the {\it nonlinear diffraction}. The full equation additionally includes
terms generated by a deviation from the paraxial approximation and by a
longitudinal electric-field component in the beam. Solitary-wave stationary
solutions to both the full and simplified equations are found, treating the
terms which modify the nonlinear Schr\"{o}dinger equation as perturbations.
Within the framework of the perturbative approach, a conserved power of the
beam is obtained in an explicit form. It is found that the nonlinear
diffraction affects stationary beams much stronger than nonparaxiality and
longitudinal field. Stability of the beams is directly tested by simulating the
simplified equation, with initial configurations taken as predicted by the
perturbation theory. The numerically generated solitary beams are always stable
and never start to collapse, although they display periodic internal
vibrations, whose amplitude decreases with the increase of the beam power.Comment: 7 pages, 6 figures Accepted for publication in PR
Observational implications of gamma-ray burst afterglow jet simulations and numerical light curve calculations
We discuss jet dynamics for narrow and wide gamma-ray burst (GRB) afterglow
jets and the observational implications of numerical simulations of
relativistic jets in two dimensions. We confirm earlier numerical results that
sideways expansion of relativistic jets during the bulk of the afterglow
emission phase is logarithmic in time and find that this also applies to narrow
jets with half opening angle of 0.05 radians. As a result, afterglow jets
remain highly nonspherical until after they have become nonrelativistic.
Although sideways expansion steepens the afterglow light curve after the jet
break, the jet edges becoming visible dominates the jet break, which means that
the jet break is sensitive to the observer angle even for narrow jets. Failure
to take the observer angle into account can lead to an overestimation of the
jet energy by up to a factor 4. This weakens the challenge posed to the
magneter energy limit by extreme events such as GRB090926A. Late time radio
calorimetry based on a spherical nonrelativistic outflow model remains relevant
when the observer is approximately on-axis and where differences of a few in
flux level between the model and the simulation are acceptable. However, this
does not imply sphericity of the outflow and therefore does not translate to
high observer angles relevant to orphan afterglows. For more accurate
calorimetry and in order to model significant late time features such as the
rise of the counterjet, detailed jet simulations remain indispensable.Comment: 7 Figures. Replaced with accepted version. Significantly expanded,
including additional discussion of time scale
Rise and fall of the X-ray flash 080330: an off-axis jet?
Original article can be found at: http://www.aanda.org/ Copyright The European Southern Observatory (ESO). DOI: 10.1051/0004-6361/200911719Context. X-ray flashes (XRFs) are a class of gamma-ray bursts (GRBs) with a peak energy of the time-integrated spectrum, , typically below 30 keV, whereas classical GRBs have of a few hundreds of keV. Apart from and the systematically lower luminosity, the properties of XRFs, such as their duration or spectral indices, are typical of the classical GRBs. Yet, the nature of XRFs and their differences from GRBs are not understood. In addition, there is no consensus on the interpretation of the shallow decay phase observed in most X-ray afterglows of both XRFs and GRBs. Aims. We examine in detail the case of XRF 080330 discovered by Swift at redshift 1.51. This burst is representative of the XRF class and exhibits an X-ray shallow decay. The rich broadband (from NIR to UV) photometric data set we collected during this phase makes it an ideal candidate for testing the off-axis jet interpretation proposed to explain both the softness of XRFs and the shallow decay phase. Methods. We present prompt -ray, early and late NIR/visible/UV and X-ray observations of the XRF 080330. We derive a spectral energy distribution from NIR to X-ray bands across the shallow/plateau phase and describe the temporal evolution of the multi-wavelength afterglow within the context of the standard afterglow model. Results. The multiwavelength evolution of the afterglow is achromatic from ~102 s to ~8104 s. The energy spectrum from NIR to X-ray is reproduced well by a simple power-law, , with = 0.790.01 and negligible rest-frame dust extinction. The light curve can be modelled by either a piecewise power-law or the combination of a smoothly broken power law with an initial rise up to ~600 s, a plateau lasting up to ~2 ks, followed by a gradual steepening to a power-law decay index of ~2 until 82 ks. At this point, a bump appears to be modelled well with a second component, while the corresponding optical energy spectrum, , reddens by = 0.260.06. Conclusions. A single-component jet viewed off-axis can explain the light curve of XRF 080330, the late-time reddening being due to the reverse shock of an energy injection episode and its being an XRF. Other possibilities, such as the optical rise marking the pre-deceleration of the fireball within a wind environment, cannot be excluded definitely, but appear to be contrived. We exclude the possibility of a dust decreasing column density being swept up by the fireball as explaining the rise of the afterglow.Peer reviewe
SCUBA sub-millimeter observations of gamma-ray bursters IV. GRB 021004, 021211, 030115, 030226, 041006
We discuss our ongoing program of Target of Opportunity (ToO) sub-millimeter
observations of gamma-ray bursts (GRBs) using the Sub-millimetre Common-User
Bolometer Array (SCUBA) on the James Clerk Maxwell Telescope (JCMT). In this
paper, we present the ToO observations of GRBs 021004, 021211, 030115, 030226,
and 041006. The observations of GRBs 021004, 021211, 030226, and 041006 all
started within ~1 day of the burst, but did not detect any significant
sub-millimeter emission from the reverse shock and/or afterglow. These
observations put some constraints on the models for the early emission,
although the generally poor observing conditions and/or the faintness of these
afterglows at other wavelengths limit the inferences that can be drawn from
these lack of detections. However, these observations demonstrate that SCUBA
can perform rapid observations of GRBs, and provide encouragement for future
observations in the Swift era. None of these GRBs had significant
sub-millimeter emission from their host galaxies. This adds to the indication
that GRBs are not closely linked to the most luminous dusty star-forming
galaxies.Comment: 10 pages, 1 color figure (no information lost if printed in black and
white
Atom laser dynamics in a tight-waveguide
We study the transient dynamics that arise during the formation of an atom
laser beam in a tight waveguide. During the time evolution the density profile
develops a series of wiggles which are related to the diffraction in time
phenomenon. The apodization of matter waves, which relies on the use of smooth
aperture functions, allows to suppress such oscillations in a time interval,
after which there is a revival of the diffraction in time. The revival time
scale is directly related to the inverse of the harmonic trap frequency for the
atom reservoir.Comment: 6 pages, 5 figures, to be published in the Proceedings of the 395th
WE-Heraeus Seminar on "Time Dependent Phenomena in Quantum Mechanics ",
organized by T. Kramer and M. Kleber (Blaubeuren, Germany, September 2007
- …