258 research outputs found

    Leafy Spurge Biological Control Using Black Dot Flea Beetles and Deleterious Rhizobacteria: Final Report Submitted to South Dakota Department of Agriculture Weed and Pest Control

    Get PDF
    Size of leafy spurge (Euphorbia esula L) roots and their location in the soil profile are important factors relating to survival offirst-instar black dot flea beetle (Aphthona nigriscutis Foudras) larvae. First-instar larvae must find leafy spurge roots between 1 to 4 mm diam in the first 2 days after hatching from eggs for survival. In field studies, we ddermined that most flea beetle larvae reside within 7.6 em ofthe soil surface. Their location in the upper areas ofthe soil profile allows accessibility to desirable size roots, however the larvae are more susceptible to freezing temperatures in this region. Overall, there were fewer black dot flea beetle larvae in the soil at the Pollock site in 1997 compared to 1995 and 1996. In 1997, harsh winter weather conditions may have resulted in high mortality of larvae

    Assessing the role of EO in biodiversity monitoring: options for integrating in-situ observations with EO within the context of the EBONE concept

    Get PDF
    The European Biodiversity Observation Network (EBONE) is a European contribution on terrestrial monitoring to GEO BON, the Group on Earth Observations Biodiversity Observation Network. EBONE’s aims are to develop a system of biodiversity observation at regional, national and European levels by assessing existing approaches in terms of their validity and applicability starting in Europe, then expanding to regions in Africa. The objective of EBONE is to deliver: 1. A sound scientific basis for the production of statistical estimates of stock and change of key indicators; 2. The development of a system for estimating past changes and forecasting and testing policy options and management strategies for threatened ecosystems and species; 3. A proposal for a cost-effective biodiversity monitoring system. There is a consensus that Earth Observation (EO) has a role to play in monitoring biodiversity. With its capacity to observe detailed spatial patterns and variability across large areas at regular intervals, our instinct suggests that EO could deliver the type of spatial and temporal coverage that is beyond reach with in-situ efforts. Furthermore, when considering the emerging networks of in-situ observations, the prospect of enhancing the quality of the information whilst reducing cost through integration is compelling. This report gives a realistic assessment of the role of EO in biodiversity monitoring and the options for integrating in-situ observations with EO within the context of the EBONE concept (cfr. EBONE-ID1.4). The assessment is mainly based on a set of targeted pilot studies. Building on this assessment, the report then presents a series of recommendations on the best options for using EO in an effective, consistent and sustainable biodiversity monitoring scheme. The issues that we faced were many: 1. Integration can be interpreted in different ways. One possible interpretation is: the combined use of independent data sets to deliver a different but improved data set; another is: the use of one data set to complement another dataset. 2. The targeted improvement will vary with stakeholder group: some will seek for more efficiency, others for more reliable estimates (accuracy and/or precision); others for more detail in space and/or time or more of everything. 3. Integration requires a link between the datasets (EO and in-situ). The strength of the link between reflected electromagnetic radiation and the habitats and their biodiversity observed in-situ is function of many variables, for example: the spatial scale of the observations; timing of the observations; the adopted nomenclature for classification; the complexity of the landscape in terms of composition, spatial structure and the physical environment; the habitat and land cover types under consideration. 4. The type of the EO data available varies (function of e.g. budget, size and location of region, cloudiness, national and/or international investment in airborne campaigns or space technology) which determines its capability to deliver the required output. EO and in-situ could be combined in different ways, depending on the type of integration we wanted to achieve and the targeted improvement. We aimed for an improvement in accuracy (i.e. the reduction in error of our indicator estimate calculated for an environmental zone). Furthermore, EO would also provide the spatial patterns for correlated in-situ data. EBONE in its initial development, focused on three main indicators covering: (i) the extent and change of habitats of European interest in the context of a general habitat assessment; (ii) abundance and distribution of selected species (birds, butterflies and plants); and (iii) fragmentation of natural and semi-natural areas. For habitat extent, we decided that it did not matter how in-situ was integrated with EO as long as we could demonstrate that acceptable accuracies could be achieved and the precision could consistently be improved. The nomenclature used to map habitats in-situ was the General Habitat Classification. We considered the following options where the EO and in-situ play different roles: using in-situ samples to re-calibrate a habitat map independently derived from EO; improving the accuracy of in-situ sampled habitat statistics, by post-stratification with correlated EO data; and using in-situ samples to train the classification of EO data into habitat types where the EO data delivers full coverage or a larger number of samples. For some of the above cases we also considered the impact that the sampling strategy employed to deliver the samples would have on the accuracy and precision achieved. Restricted access to European wide species data prevented work on the indicator ‘abundance and distribution of species’. With respect to the indicator ‘fragmentation’, we investigated ways of delivering EO derived measures of habitat patterns that are meaningful to sampled in-situ observations

    Using a stakeholder-engaged, iterative, and systematic approach to adapting collaborative decision skills training for implementation in VA psychosocial rehabilitation and recovery centers

    Get PDF
    Background: Adaptation of interventions is inevitable during translation to new populations or settings. Systematic approach to adaptation can ensure that fidelity to core functions of the intervention are preserved while optimizing implementation feasibility and effectiveness for the local context. In this study, we used an iterative, mixed methods, and stakeholder-engaged process to systematically adapt Collaborative Decision Skills Training for Veterans with psychosis currently participating in VA Psychosocial Rehabilitation and Recovery Centers. Methods: A modified approach to Intervention Mapping (IM-Adapt) guided the adaptation process. An Adaptation Resource Team of five Veterans, two VA clinicians, and four researchers was formed. The Adaptation Resource Team engaged in an iterative process of identifying and completing adaptations including individual qualitative interviews, group meetings, and post-meeting surveys. Qualitative interviews were analyzed using rapid matrix analysis. We used the modified, RE-AIM enriched expanded Framework for Reporting Adaptations and Modifications to Evidence-based interventions (FRAME) to document adaptations. Additional constructs included adaptation size and scope; implementation of planned adaptation (yes–no); rationale for non-implementation; and tailoring of adaptation for a specific population (e.g., Veterans). Results: Rapid matrix analysis of individual qualitative interviews resulted in 510 qualitative codes. Veterans and clinicians reported that the intervention was a generally good ft for VA Psychosocial Rehabilitation and Recovery Centers and for Veterans. Following group meetings to reach adaptation consensus, 158 adaptations were completed. Most commonly, adaptations added or extended a component; were small in size and scope; intended to improve the effectiveness of the intervention, and based on experience as a patient or working with patients. Few adaptations were targeted towards a specific group, including Veterans. Veteran and clinician stakeholders reported that these adaptations were important and would benefit Veterans, and that they felt heard and understood during the adaptation process. Conclusions: A stakeholder-engaged, iterative, and mixed methods approach was successful for adapting Collaborative Decision Skills Training for immediate clinical application to Veterans in a psychosocial rehabilitation center. The ongoing interactions among multiple stakeholders resulted in high quality, tailored adaptations which are likely to be generalizable to other populations or settings. We recommend the use of this stakeholder-engaged, iterative approach to guide adaptations

    Enhancing assertive community treatment with cognitive behavioral social skills training for schizophrenia: study protocol for a randomized controlled trial

    Get PDF
    BACKGROUND: Schizophrenia leads to profound disability in everyday functioning (e.g., difficulty finding and maintaining employment, housing, and personal relationships). Medications can effectively reduce positive symptoms (e.g., hallucinations and delusions), but they do not meaningfully improve daily life functioning. Psychosocial evidence-based practices (EBPs) improve functioning, but these EBPs are not available to most people with schizophrenia. The field must close the research and service delivery gap by adapting EBPs for schizophrenia to facilitate widespread implementation in community settings. Our hybrid effectiveness and implementation study represents an initiative to bridge this divide. In this study we will test whether an existing EBP (i.e., Cognitive Behavioral Social Skills Training (CBSST)) modified to work in practice settings (i.e., Assertive Community Treatment (ACT) teams) commonly available to persons with schizophrenia results in better consumer outcomes. We will also identify key factors relevant to developing future CBSST implementation strategies. METHODS/DESIGN: For the effectiveness study component, persons with schizophrenia will be recruited from existing publicly funded ACT teams operating in community settings. Participants will be randomized to one of the 2 treatments (ACT alone or ACT + Adapted CBSST) and followed longitudinally for 18 months with assessments every 18 weeks after baseline (5 in total). The primary outcome domain is psychosocial functioning (e.g., everyday living skills and activities related to employment, education, and housing) as measured by self-report, testing, and observation. Additional outcome domains of interest include mediators of change in functioning, symptoms, and quality of services. Primary analyses will be conducted using linear mixed-effects models for continuous data. The implementation study component consists of a structured, mixed qualitative-quantitative methodology (i.e., Concept Mapping) to characterize and assess the implementation experience from multiple stakeholder perspectives in order to inform future implementation initiatives. DISCUSSION: Adapting CBSST to fit into the ACT service delivery context found throughout the United States creates an opportunity to substantially increase the number of persons with schizophrenia who could have access to and benefit from EBPs. As part of the implementation learning process training materials and treatment workbooks have been revised to promote easier use of CBSST in the context of brief community-based ACT visits. TRIAL REGISTRATION: ClinicalTrials.gov NCT02254733. Date of registration: 25 April 2014

    Skills-based intervention to enhance collaborative decision-making: systematic adaptation and open trial protocol for veterans with psychosis

    Get PDF
    Background Collaborative decision-making is an innovative decision-making approach that assigns equal power and responsibility to patients and providers. Most veterans with serious mental illnesses like schizophrenia want a greater role in treatment decisions, but there are no interventions targeted for this population. A skills-based intervention is promising because it is well-aligned with the recovery model, uses similar mechanisms as other evidence-based interventions in this population, and generalizes across decisional contexts while empowering veterans to decide when to initiate collaborative decision-making. Collaborative Decision Skills Training (CDST) was developed in a civilian serious mental illness sample and may fill this gap but needs to undergo a systematic adaptation process to ensure fit for veterans. Methods In aim 1, the IM Adapt systematic process will be used to adapt CDST for veterans with serious mental illness. Veterans and Veteran’s Affairs (VA) staff will join an Adaptation Resource Team and complete qualitative interviews to identify how elements of CDST or service delivery may need to be adapted to optimize its effectiveness or viability for veterans and the VA context. During aim 2, an open trial will be conducted with veterans in a VA Psychosocial Rehabilitation and Recovery Center (PRRC) to assess additional adaptations, feasibility, and initial evidence of effectiveness. Discussion This study will be the first to evaluate a collaborative decision-making intervention among veterans with serious mental illness. It will also contribute to the field’s understanding of perceptions of collaborative decision-making among veterans with serious mental illness and VA clinicians, and result in a service delivery manual that may be used to understand adaptation needs generally in VA PRRCs

    Lowering β-Amyloid Levels Rescues Learning and Memory in a Down Syndrome Mouse Model

    Get PDF
    β-amyloid levels are elevated in Down syndrome (DS) patients throughout life and are believed to cause Alzheimer's disease (AD) in adult members of this population. However, it is not known if β-amyloid contributes to intellectual disability in younger individuals. We used a γ-secretase inhibitor to lower β-amyloid levels in young mice that model DS. This treatment corrected learning deficits characteristic of these mice, suggesting that β-amyloid-lowering therapies might improve cognitive function in young DS patients

    Assessing stimulus–stimulus (semantic) conflict in the Stroop task using saccadic two-to-one color response mapping and preresponse pupillary measures

    Get PDF
    © 2015, The Psychonomic Society, Inc. Conflict in the Stroop task is thought to come from various stages of processing, including semantics. Two-to-one response mappings, in which two response-set colors share a common response location, have been used to isolate stimulus–stimulus (semantic) from stimulus–response conflict in the Stroop task. However, the use of congruent trials as a baseline means that the measured effects could be exaggerated by facilitation, and recent research using neutral, non-color-word trials as a baseline has supported this notion. In the present study, we sought to provide evidence for stimulus–stimulus conflict using an oculomotor Stroop task and an early, preresponse pupillometric measure of effort. The results provided strong (Bayesian) evidence for no statistical difference between two-to-one response-mapping trials and neutral trials in both saccadic response latencies and preresponse pupillometric measures, supporting the notion that the difference between same-response and congruent trials indexes facilitation in congruent trials, and not stimulus–stimulus conflict, thus providing evidence against the presence of semantic conflict in the Stroop task. We also demonstrated the utility of preresponse pupillometry in measuring Stroop interference, supporting the idea that pupillary effects are not simply a residue of making a response

    Addressing statistical biases in nucleotide-derived protein databases for proteogenomic search strategies

    Get PDF
    [Image: see text] Proteogenomics has the potential to advance genome annotation through high quality peptide identifications derived from mass spectrometry experiments, which demonstrate a given gene or isoform is expressed and translated at the protein level. This can advance our understanding of genome function, discovering novel genes and gene structure that have not yet been identified or validated. Because of the high-throughput shotgun nature of most proteomics experiments, it is essential to carefully control for false positives and prevent any potential misannotation. A number of statistical procedures to deal with this are in wide use in proteomics, calculating false discovery rate (FDR) and posterior error probability (PEP) values for groups and individual peptide spectrum matches (PSMs). These methods control for multiple testing and exploit decoy databases to estimate statistical significance. Here, we show that database choice has a major effect on these confidence estimates leading to significant differences in the number of PSMs reported. We note that standard target:decoy approaches using six-frame translations of nucleotide sequences, such as assembled transcriptome data, apparently underestimate the confidence assigned to the PSMs. The source of this error stems from the inflated and unusual nature of the six-frame database, where for every target sequence there exists five “incorrect” targets that are unlikely to code for protein. The attendant FDR and PEP estimates lead to fewer accepted PSMs at fixed thresholds, and we show that this effect is a product of the database and statistical modeling and not the search engine. A variety of approaches to limit database size and remove noncoding target sequences are examined and discussed in terms of the altered statistical estimates generated and PSMs reported. These results are of importance to groups carrying out proteogenomics, aiming to maximize the validation and discovery of gene structure in sequenced genomes, while still controlling for false positives

    The role of GDNF family ligand signalling in the differentiation of sympathetic and dorsal root ganglion neurons

    Get PDF
    The diversity of neurons in sympathetic ganglia and dorsal root ganglia (DRG) provides intriguing systems for the analysis of neuronal differentiation. Cell surface receptors for the GDNF family ligands (GFLs) glial cell-line-derived neurotrophic factor (GDNF), neurturin and artemin, are expressed in subpopulations of these neurons prompting the question regarding their involvement in neuronal subtype specification. Mutational analysis in mice has demonstrated the requirement for GFL signalling during embryonic development of cholinergic sympathetic neurons as shown by the loss of expression from the cholinergic gene locus in ganglia from mice deficient for ret, the signal transducing subunit of the GFL receptor complex. Analysis in mutant animals and transgenic mice overexpressing GFLs demonstrates an effect on sensitivity to thermal and mechanical stimuli in DRG neurons correlating at least partially with the altered expression of transient receptor potential ion channels and acid-sensitive cation channels. Persistence of targeted cells in mutant ganglia suggests that the alterations are caused by differentiation effects and not by cell loss. Because of the massive effect of GFLs on neurite outgrowth, it remains to be determined whether GFL signalling acts directly on neuronal specification or indirectly via altered target innervation and access to other growth factors. The data show that GFL signalling is required for the specification of subpopulations of sensory and autonomic neurons. In order to comprehend this process fully, the role of individual GFLs, the transduction of the GFL signals, and the interplay of GFL signalling with other regulatory pathways need to be deciphered
    corecore