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ABSTRACT: Proteogenomics has the potential to advance
genome annotation through high quality peptide identifications
derived from mass spectrometry experiments, which demonstrate
a given gene or isoform is expressed and translated at the protein
level. This can advance our understanding of genome function,
discovering novel genes and gene structure that have not yet been
identified or validated. Because of the high-throughput shotgun
nature of most proteomics experiments, it is essential to carefully
control for false positives and prevent any potential misannota-
tion. A number of statistical procedures to deal with this are in
wide use in proteomics, calculating false discovery rate (FDR) and
posterior error probability (PEP) values for groups and individual
peptide spectrum matches (PSMs). These methods control for
multiple testing and exploit decoy databases to estimate statistical
significance. Here, we show that database choice has a major effect on these confidence estimates leading to significant differences
in the number of PSMs reported. We note that standard target:decoy approaches using six-frame translations of nucleotide
sequences, such as assembled transcriptome data, apparently underestimate the confidence assigned to the PSMs. The source of
this error stems from the inflated and unusual nature of the six-frame database, where for every target sequence there exists five
“incorrect” targets that are unlikely to code for protein. The attendant FDR and PEP estimates lead to fewer accepted PSMs at
fixed thresholds, and we show that this effect is a product of the database and statistical modeling and not the search engine. A
variety of approaches to limit database size and remove noncoding target sequences are examined and discussed in terms of the
altered statistical estimates generated and PSMs reported. These results are of importance to groups carrying out
proteogenomics, aiming to maximize the validation and discovery of gene structure in sequenced genomes, while still controlling
for false positives.

KEYWORDS: proteogenomics, peptide spectrum match, false discovery rate, posterior error probability, expressed sequence tag

■ INTRODUCTION

Rapid advances in mass spectrometry-based proteomics have
been made possible by improvements in peptide separation
techniques, high-resolution instruments and downstream
informatic processing. Researchers can now obtain a
comprehensive catalogue of the proteome in single-celled
organisms1 and a near-comprehensive catalogue in multicellular
organisms.2 However, the database search method that
underpins the majority of proteomic workflows typically
requires a high quality set of protein-coding genes. To improve
proteome coverage, mass spectrometry (MS) data can be
searched against protein sequences inferred from either the
genome3−6 or transcriptome.7−12 Such proteogenomic ap-
proaches are not biased toward existing gene annotations and
therefore offer scope for novel gene/protein discovery. Indeed,
proteogenomics has led to the discovery of thousands of novel
gene candidates,4,5,12 protein isoforms,13,14 amino acid poly-
morphisms,15,16 and confirmation and correction of gene

models.5,17−21 A recurring observation in these studies is that
current gene models, which are largely computational
predictions themselves, are often incomplete and erroneous.
For instance, lowly expressed splice variants and noncanonical
genes often prove difficult to annotate.20,22

However, the database size and attendant search space when
searching raw genomes, particularly metazoan ones, is usually
dramatically inflated. For example, a translation of the human
genome in all six reading frames would result in a huge search
space: typically thousands of LC-MS/MS spectra would need
to be searched against at least 6 × 109 amino acids. Moreover,
eukaryotic genomes are also heavily populated by non-protein-
coding regions, introns and hitherto unannotated splice
variants. Although it is possible to search directly against
translated genomic sequence, this is clearly a challenging task
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that requires careful quality control to avoid false positives and
integration of peptide spectrum matches (PSMs) over a
genomic locus.
An alternative approach is to search against expressed

sequence tags (ESTs) generated from traditional Sanger
sequencing9,10 or from next-generation sequencing7,12 since
they are by definition transcribed (and likely translated) regions
of the genome. For example, this approach has been
successfully applied to UniGene clusters by generating a six-
frame translation and compressing the resulting protein
sequence database to remove redundancy.9 This allowed the
discovery of nonsynonymous mutations, splice-variants, micro
exons and alternative translation reading frames, some of which
could not be identified from a direct genome search. An
alternative method for reducing the search space involves
translating the ESTs into proteins using probabilistic
approaches such as ESTScan2,23 DECODER24 and Fra-
meDP.25 For example, Robinson and colleagues10 identified
secretory proteins involved in helminth pathogenesis by
searching spectra against protein sequences predicted by
ESTScan2, which uses a hidden Markov model to distinguish
CDS from untranslated regions (UTRs) and correct potential
sequencing errors. Such studies have shown that searching
against a concise database enriched in protein-coding sequences
can increase sensitivity.
Controlling for false positive identifications is essential in

high-throughput proteomics studies and particularly so for
proteogenomics where intergenic sequence, introns and UTR
together can constitute most of the database. Several database
search tools such as Mascot,26 Inspect,27 X-Tandem28 or
Sequest29 are commonly used to search spectra against a six-
frame translated nucleotide sequence,4,5,9,17,30−35 but the
output scores for candidate PSMs cannot be compared directly
across experiments. Indeed, it is widely accepted that applying
E-value thresholds is anticonservative36 and different search
engines estimate quite different significance levels.37 Instead,
the global error rate is typically estimated by ordering the PSMs
according to their E-value or search engine-specific score and
calculating the false discovery rate (FDR).38−40 The FDR is
estimated from the percentage of incorrect PSMs at a given
threshold, which is usually calculated using a target-decoy
approach. The exact details of this vary and much discussion in
the field exists as to the best approach,41−45 although the basic
principle is well established. This involves searching the spectra
against both a target database of ‘real’ sequences and a decoy
database containing ‘fake’ sequences produced by reversing or
randomizing the target sequences; hits to the latter are
considered to be false and are used to estimate the level of
incorrect target PSMs at a given score threshold. The FDR
applies globally to a collection of PSMs, but individual PSMs
can also be associated with a q-value38 from the FDR level at
which they are first reported. The q-value is still a measure of
the global error rate within a set of PSMs and like the FDR is
dependent on the properties of the database used.36

In contrast to the global error rate, a ‘local’ FDR termed the
Posterior Error Probability (PEP) is also frequently estimated
as the probability of an individual PSM being incorrect. For
example, the software tool Qvality46,47 implements a non-
parametric approach for calculating the PEP by estimating the
proportion of the target score distribution that is incorrect
given a set of p-values or a decoy score distribution. Similarly,
PeptideProphet48 can be used to calculate PEPs and can

incorporate decoy search results to enable semiparametric
modeling and therefore greater flexibility.49

Both the FDR and PEP approaches exploit target/decoy
database search results to assign statistical significance to PSMs,
presuming that the target database accurately represents
genuine protein sequences and the decoy database is of equal
(or known) size and similar redundancy.44 In this study, we
examine whether these criteria are indeed met in the context of
proteogenomics experiments. Specifically, we highlight the
problems associated with the standard target−decoy approach
for assessing the statistical significance of PSMs assigned to
predicted protein sequences derived from a large collection of
Chicken ESTs. We consider searches against six-frame
translations and single-frame predicted protein translations,
comparing different approaches to estimate the statistical
significance of the PSMs. Search results are highly dependent
on database choice and suggest potential pitfalls when searching
six-frame databases linked to database size and target−decoy
error modeling. We believe this leads to overconservative
significance estimates for six-frame translation databases and a
reduction in sensitivity and, hence, fewer confident PSMs and
peptides. We investigate the source of the errors, biases in six-
frame translation databases, and suggest a variety of approaches
to address these problems. This can be achieved by modifying
the six-frame database or by conceptually translating the EST
sequences. The results have significance for any group carrying
out proteogenomic searches against genomic or transcriptome-
based sequences.

■ MATERIALS AND METHODS

EST Data Set

A total of 339 314 ESTs were sequenced from 64 cDNA
libraries derived from 21 chicken tissues, and then clustered and
assembled using BLASTN and PHRAP to generate 85 486 EST
contigs.50 These are available via http://www.chick.umist.ac.uk.
Two different sets of protein sequences were predicted from
each EST contig using the EORF and ESTScan223 algorithms.

Preparation of Chicken Samples and Mass Spectrometry

We used a comprehensive data set of peptide spectra generated
for an unrelated DT40 project, kindly donated by colleagues at
the University of Cambridge (Kathryn Lilley, personal
communication). The MS/MS data were derived from a
proteomic analysis of the DT40 chicken cell line which used the
LOPIT protocol, and was originally published in 2009.51 Full
details are available in the original paper,51 but briefly, DT40
cells were fractionated by density gradient centrifugation and 7
fractions were chosen for analysis. The selected fractions were
labeled with four-plex iTRAQ reagents and digested with
trypsin. Labeled peptides were pooled together and separated
using two-dimensional liquid chromatography. LC-MS/MS was
performed using an ultimate-nano-LC system (Dionex)
coupled to a QSTAR XL mass spectrometer (Applied
Biosystems). The QSTAR XL was operated in information-
dependent acquisition mode in which 1 s MS scans were
performed (400−1600 m/z) followed by 3 s product ion scans
(100−1580 m/z) on the two most intense doubly and triply
charged peptides. The LOPIT protocol and iTRAQ labeling
were incidental to our study which focuses solely on the relative
merits of database composition and attendant statistical
treatments to peptide identification.
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Databases

Ensembl protein sequences were downloaded in fasta format
from the Ensembl FTP server (ftp://ftp.Ensembl.org). Version
56 of the ‘pep.all’ set containing translations from known and
novel genes was used. The UniRef90 database (release 15.11)
was downloaded from (http://www.uniprot.org/downloads). A
custom Perl script was used to generate the six-frame
translation database from 85 486 EST contig sequences,
generating 3 forward and 3 reverse-frame sequences using the
standard genetic code. Protein sequences were also predicted
from the EST contigs using the ESTScan2 and EORF programs
(manuscript in preparation). Briefly, EORF calculates a score
for each reading frame based on its codon usage bias and
sequence homology derived from BLAST searches againt
UniProt, and was used to predict 67 125 ORFs from the EST
contigs (a small fraction are rejected as unlikely to be coding).
ESTScan223 uses a hidden Markov model to predict the correct
reading frame and UTRs. ESTScan2 predicted a total of 62 161
protein sequences from the ESTs (again rejecting noncoding
ESTs).

Mass Spectrometry Database Searching

A total of 403 820 centroided spectra were searched against
protein sequences derived from the ESTs using Mascot version
2.0, with a precursor MS error tolerance of 0.2 Da and MSMS
error tolerance of 0.8 Da. Fixed modifications were Cysteine β-
methylthiolation and iTRAQ labeling of Lysine residues and N-
termini. Variable modifications were iTRAQ labeled tyrosine
and Methionine oxidation. Up to 1 missed cleavage was
permitted.
Five different databases were searched: Ensembl version 56,

EORF predictions, ESTScan2 predictions, and the six-frame
translations. In addition, various combinations of EORF,
ESTScan2 and six-frame sequences were searched to find the
database which allows for the most PSMs. Typically, the
majority of PSMs for a database search are incorrect; hence, it is
important to accurately predict which PSMs represent real
peptides present in the samples. For statistical evaluation of the

data, decoy databases were constructed by reversing each
protein sequence in the original ‘target’ database. Two types of
target−decoy searches were performed: separate and compo-
site. In the composite search, the decoy database was
concatenated onto the target database and then used as a
single database for the Mascot searches, whereas the separate
search involved independent searches against target and decoy
databases.

Statistical Methods for Validating PSMs

From composite (concatenated) searches, FDRs were calcu-
lated using the methods published by Ellias and Gygi,40 and
Kal̈l et al.39 to estimate the proportion of false positive PSMs
that have accumulated at a given Mascot score giving FDREG
and FDRKal̈l, respectively. Because the FDR does not increase
monotonically with Mascot score, q-values were calculated as
the minimum FDR at which a PSM is accepted. The FDRScore
method52 was used to combine PSMs from the EORF and
ESTScan2 searches. For each of the two database searches, a
custom perl script was used to assign q-values against Mascot
scores, to identify step points (where the q-value increases).
From this, a linear regression was calculated between each step
point. The FDRScore was calculated for each Mascot score
between the step points, according to the gradient of the line.
PSMs common to both searches were then merged by
calculating the geometric mean of their FDRScores. The
PSMs were then resorted by their Average FDRScores to
calculate a new set of q-values, from which a second FDRScore
was calculated, termed the combined FDRScore.
In parallel to the composite database estimates, the Mascot

scores for separate database searches were used to calculate the
local FDR, or PEP, using the software tool Qvality.46,47 Default
parameters were used to generate a set of PEPs and PEP-
derived q-values linked to Mascot scores.

Estimating the Proportion of Correct PSMs

EST contigs and their attendant reading frames were assigned
to Ensembl proteins via BLASTX searches against the
Ensembl56 database. Assignments were made for the top

Figure 1. Schematic of EST translation for target:decoy database generation. Translation of transcriptome data such as ESTs in all six reading frames
increases the proportion of ‘junk’ sequence. In this simplified model, only one of the six reading frames is correct (sequence A in frame 2). Sequences
denoted by “B” are in the correct direction and therefore in some circumstances could constitute part of the correct ORF as a result of pre-mRNA
splicing or frameshift errors. Sequences denoted by “C“ are in the wrong direction and are therefore incorrect. Decoy sequences are created by
reversing the six corresponding target six sequences, so that decoy1 is the reverse of B1, decoy 2 the reverse of A2, and so on.

Journal of Proteome Research Article

dx.doi.org/10.1021/pr300411q | J. Proteome Res. 2012, 11, 5221−52345223

ftp://ftp.Ensembl.org
http://www.uniprot.org/downloads


scoring hits which passed the following cut-offs: Identity >95%;
Coverage >50 residues; E-value <0.001. EST contigs with
significant hits were extracted along with the top scoring
reading frame. We assumed that the highest scoring reading-
frame contained the correct ORF. This information was
integrated with the six-frame translation database, to identify
the sequences in the ‘correct’ reading frame owing to the
BLASTX match. PSMs having a match with the correct reading
frame were then assumed to be correct.
The probability distributions of the amino acid frequencies

were calculated for each reading frame and compared with the
probability distributions for the Ensembl and UniProt90
protein sequences. The amino acid frequency of the entire
correct reading frame set was calculated separately from the
incorrect reading frames. The Mann−Whitney U test was used
to measure the degree of divergence between the amino acid
distributions of the correct frames with each of the incorrect
frames different distributions.

■ RESULTS AND DISCUSSION

Searching against Six-Frame or Redundant Databases
Affects Sensitivity

When searching high-throughput mass spectrometry data
against a protein database using a target−decoy strategy, it is
usually the case that the target database is composed of genuine
protein sequences that could be present in the sample, and
random (false) matches to target and decoy database are
equally likely. However, when searching against a six-frame
database, these conditions are not necessarily met. One
anomaly is that at most only one out of the six possible
reading frames translated from a nucleotide sequence is likely
to be coding (presuming that there is only one protein coding
ORF at any given locus) and can lead to “true” target PSMs.
This is illustrated in Figure 1 for a hypothetical EST sequence
that codes for a protein, along with its six conceptual
translations (forward frames 1, 2, 3 and reverse frames 4, 5,
6) and the attendant six decoy frames. Only the target frame A2
contains a true coding sequence and is matched by a single
PSM in this case. Frame B1 and B3 are in the correct direction
(and could contain correct PSMs if there were a frameshift
mutation in the nucleotide sequence) while frames C4−C6 are
not. Although the target and decoy databases contain the same
number of sequences, amino acid composition and tryptic
peptides, the five “wrong” target frames are not likely to be
protein-like. This expansion of the target database is in
principle similar to simply adding more proteins (perhaps
from another species) to the database, but in this case, the
additional targets are clearly “wrong” and not likely to be
protein-like in composition. Moreover, the expansion is
particularly big, adding five extra sequences for every original
target. This could confound the assumptions normally held for
target-decoy FDR calculations and lead to incorrect statistical
modeling.45

To test this, we searched tandem mass spectra derived from a
chicken DT40 cell line against different protein databases
generated from assembled EST contigs, applying a variety of
FDR and PEP-based confidence measures to generate
significant PSMs. For FDR estimation, two widely used
approaches using concatenated target−decoy databases were
used based on methods published by Kal̈l et al.39 and Elias and
Gygi40 to generate FDRKal̈l and FDREG estimates with attendant
q-values. Finally, the PEP and PEP-derived q-values were also

estimated from separate database searches using Qvality.47 As
described in the methods, five different protein sequences
databases were generated from the EST contigs and assessed by
the number of PSMs accepted at a consistent threshold (q-
value/PEP < 0.01) for the different confidence measures (Table
1). Decoy sequences were created by reversing the target
sequences (see also Materials and Methods).

Table 1 shows that considerably fewer PSMs were accepted
when searching the six-frame database at a q-value/PEP cutoff
of 0.01, in comparison to the other databases searched. This
observation is independent of the chosen measure of statistical
significance, suggesting it is a problem specific to the six-frame
database searches (whether concatenated or separate). This
reduced sensitivity can be attributed to several factors. First, the
six-frame database is more than seven times greater in size than
the other databases, and it is known that large databases can
lead to reduced search sensitivity owing to more conservative
statistical estimates45,53 (or conversely, small database size leads
to overestimates of significance and likely false positives).
Second, the unusual nature of the six-frame database could be
confounding and inflating the FDR. In all likelihood, only one
of the six forward frames is “correct” and can be matched by
genuine peptide spectra. This could lead to an effective
imbalance in the true “target” sequences and false “decoy”
sequences, since at least five of the target frames are also likely
to be wrong, which in turn compromises FDR estimates.
A further possible explanation for the poor PSM sensitivity

observed for the six-frame searches could be derived from the
ESTScan2/EORF translations correcting errors such as frame-
shifts, leading to peptides that are absent from the six-frame
database. To test this, using the FDRKal̈l metric, we compared
unique peptide sequences from ESTScan2 PSMs to those
derived from six-frame PSMs, in Figure 2a. Only 389 peptides
(∼3% of ESTScan2 peptides derived from PSMs with q-values
less than the 0.01 threshold) are unique to the ESTScan2
database searches. Most of these are expected to come from the
translational corrections applied by ESTScan2. While these
peptides do contribute to the higher sensitivity of the
ESTScan2 search, their overall contribution is minimal. In
contrast, 11 902 peptide sequences derive from PSMs found in
both databases and 7917 of these have PSM q-values less than
the 0.01 significance threshold. Hence, 3985 peptides are “lost”
in the six-frame search despite having PSMs in the Mascot
output with the same score but with q-values >0.01. Thus, the
majority (91%) of the additional ESTScan2 peptides have
arisen as a result of the inflated q-values associated with the six-
frame target−decoy error modeling as opposed to correction of
frame shift errors. It should also be noted that some 703
peptides are exclusive to the six-frame search as ESTScan2 did

Table 1. Unique Peptide Identifications at q-Value/PEP <
0.01 for Different Database Searches

FDREG q-
value

FDRKal̈l q-
value

PEP-derived
q-value

qvality
PEP

ESTScan2 10519 12291 10721 7323
EORF 9606 11502 9290 7143
six-frame translations 6730 8620 7328 4951
EORF + ESTScan2 9702 11466 9854 6962
EORF + ESTScan2 +
six-frame

6778 8616 7405 5020

EORF + ESTScan2
(FDRScore)

11532 13813 - -
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not predict a coding sequence, and thus could not be matched
by any spectra. These general trends are matched when
considering data at the PSM instead of the peptide level (see
Supporting Information Figure S1).
In contrast, fewer peptide identifications are “lost” when

comparing ESTScan2 and EORF search results, shown in
Figure 2b. In this case, ESTScan2 generates more accepted
PSMs and attendant unique peptides, but only 1040 additional
peptides are “lost” to EORF owing to different FDR modeling
while 10 810 are shared. The same trend is observed at the
PSM level, where only 2% of accepted ESTScan2 PSMs were
missed by EORF due to FDR differences, and 87% of accepted
ESTScan2 PSMs were also accepted by EORF (see Supporting
Information Figure S1).
We also note that combining the EORF and ESTScan2

databases leads to fewer PSMs at an equivalent q-value/PEP
threshold, as shown in Table 1. This could be due to increased
size as well as redundancy when combining similar databases
(i.e., EORF and ESTScan2) where target protein sequences are
more likely to be shared. Redundancy of target sequences is
already known to degrade search quality; this can be addressed
by merging highly similar sequences into a single entry and

appending sequence variants in a compatible fashion for MS
database searches.22 One potential downside of this approach,
however, is the potential loss of subtle variations that represent
different biological entities that could be important for
proteogenomics.
To circumnavigate this redundancy issue and integrate PSMs

from separate ESTScan2 and EORF searches, we used the
FDRScore method52 that was initially designed to merge results
from multiple search engines.52,54,55 This approach removes
redundancy at the PSM level by combining FDRKal̈l q-values
from matched PSMs across two database searches and models
database-specific PSMs independently, to derive an integrated
FDR estimate. This resulted in 1522 additional PSMs
compared to ESTScan2 alone and 5193 compared to the six-
frame database. For our spectral data set, this results in the
largest number of significant PSMs from all the approaches
considered at the same nominal significance threshold of 0.01.
However, this is only applicable to the FDRScore method when
used to calculate q-values for concatenated target−decoy
databases.
The relationship between q-value/PEP and Mascot score was

further investigated in order to explain the poor sensitivity of
the six-frame translation searches. The PEP, PEP-derived q-
values, and empirical q-values (FDRKal̈l) were plotted against
Mascot scores for each database search (Figure 3). Figure3a
confirms that the Mascot ion score for equivalent PSMs is
independent of the database searched, a relationship that holds
for all the paired searches we ran and supports comparisons
across the different database searches. Figure 3 confirms that
the PEP is clearly the more conservative approach, consistent
with previous studies36,44 and that, independent of the
significance measure used, the six-frame translation PSMs
have higher q-values/PEPs compared to the other database
searches.
Biases in the target−decoy database construction methods

for FDR calculations have been noted before, which can lead to
effective decoy database sizes larger than the target.44 We
contend that standard six-frame translation databases may also
suffer from related problems leading to inflated q-values and
PEPs, as observed in Figure 3. The extent of this inflation can
be gauged by comparing the maximum q-values of the different
database searches. For example, Figure 3d shows that the
maximum PEP-derived q-value (the y-intercept) for the six-
frame translation PSMs is much greater than the equivalent q-
values for the EORF and ESTScan2 PSMs: approximately 0.8
compared to 0.53. Similarly, the maximum FDRKal̈l q-value for
the six-frame database search is much larger than the equivalent
q-values from other searches (Figure 3b), and the same trend is
also observed for the PEP (Figure 3c). The differences in these
profiles show the effect that the choice of error model and
database has on search results for high-throughput proteomics.
Collectively, these results point to the statistical modeling

and not the search engine scoring that lead to a sensitivity
reduction in accepted PSMs at a fixed statistical threshold for
six-frame searches, and highlight the importance of redundancy
removal and careful database design for estimating PSM
statistics in proteogenomics. However, although we observe a
broad range of FDR and PEP estimates for the same PSMs, we
still do not know which ones are closest to the truth, although
one might presume the six-frame values are overly conservative
since this is the least sensitive search. We try to address this in
the next section.

Figure 2. Overlap of peptides identified in pairwise database searches
Overlap of unique peptide sequences derived from PSMs in the
searches against: (a) the ESTScan2 and six-frame databases, (b)
ESTScan2 and EORF databases. In both cases, FDRKall q-value cut-offs
of 0.01 for the various searches are indicated by dotted lines, black for
ESTScan2 and white for the six-frame or EORF searches. PSMs are
sorted by Mascot score from low scores (bottom) to high scores (top).
The majority of the unique accepted peptides identified in ESTScan2
but missed by the six-frame database were present on both databases
but have q-values that exceed the threshold six-frame q-value
threshold.
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The q-Value/PEP Values for the Six-Frame Database Search
Are Overestimates Compared to Expectation

To further study the most appropriate database and error
model for the six-frame search results, we investigated an
alternative measure of truth for PSMs passing a given statistical
threshold. We reasoned that for all EST contigs with significant
BLASTX hits to the Chicken Ensembl56 set of proteins, only
one of the six translated frames is “correct” based on the top-
scoring BLASTX hit to Ensembl. Corresponding PSMs to this
“correct” frame were also classified as “correct”, all others as
“incorrect”.
We therefore expect that close to 100% of all PSMs are

“correct” at the lowest q-values/PEPs and, correspondingly,
target PSMs with very high q-values/PEPs should be false.
Accordingly, PSMs with q-values and PEPs close to zero should
be in the “correct” reading frame almost 100% of the time,

whereas manifestly incorrect PSMs should be in the “correct”
reading frame approximately 17% (one-sixth) of the time.
Figure 4 shows that the proportion of correct reading frame
PSMs is in fact close to 92.5% at the lowest q-values/PEPs.
This small discrepancy can be explained by the fact that the
reading frame with the most significant BLASTX hit does not
always correspond with (and contain) all the true protein
sequence. This will be mostly due to sequencing and mis-
assembly errors from the ESTs generating “frameshift” errors
that push the true coding sequence in to multiple frames.
Therefore, we likely underestimate the proportion of correct
PSMs by approximately 7% at the lowest (most significant) q-
value/PEP thresholds due to these instances. This represents
the maximum error for the estimated percentage of true
positive PSMs. Figure 4a shows the percentage of correct PSMs
from the total number of PSMs accepted for each q-value
calculated using both the FDRKal̈l and FDREG q-values, as well

Figure 3. Variation of search statistics with Mascot score. Plots show the calculated q-values and PEPs for PSMs from different proteogenomic
database searches and their dependence on Mascot ion score. (a) Mascot Scores of equivalent PSMs from two independent database searches are
plotted, in this case ESTScan vs six-frame, although identical plots were obtained for all pairwise comparisons. (b) The q-values calculated using
FDRKall are plotted against Mascot ion score, (c) PEPs calculated using Qvality, and (d) q-values calculated from Qvality, for different database
search combinations. In the key, 6F denotes the six-frame searches.
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as from separate database searches using Qvality. The dashed
line represents the percentage of PSMs falling in the “correct”
reading frame that would be expected at a given q-value
threshold, presuming the error modeling is accurate (see
Supporting Information Excel File for derivation). For example,
approximately 58.3% of PSMs should be in the “correct” frame
at a q-value of 0.5, which falls slightly further still to 54% when
we factor in the scaled 7% correction described above (Figure
4a). However, the observed percentages are significantly higher
than would be expected by chance, at close to 66%, 73%, and
75% of PSMs assigned to the correct reading frame for the
FDRKal̈l, Qvality, and FDREG based q-values, respectively. This
highlights the overly conservative nature of the q-value
estimates for the six-frame database search. Interestingly, the
FDRKal̈l q-value yields percentages that are closest to expect-
ation, suggesting that for this case, at least, it is a more accurate
FDR calculation.
The proportion of true positive PSMs at different PEPs was

also estimated, again assigning “correct” reading frames via

BLASTX searches (Figure 4b). In this case, the percentage
“correct” was calculated within 0.01 bins because the PEP,
unlike the q-value, is a local measure of significance which can
become overly conservative when thresholds are applied to a
list of PSMs, as discussed previously by Kal̈l et al.56 The extent
of this conservativeness can be seen in Figure 4a, where the
percentage of correct PSMs remains above 80% for PEPs above
0.8. The binned PEP data in Figure 4b is noisy compared to the
cumulative data in Figure 4a, but nevertheless shows a similar
trend to the q-value data. Again, the PEP overestimates the
expected proportion of true positive PSMs and both q-value
and PEP suffer from poor accuracy when deployed without
correction in six-frame database searches.
Nevertheless, the PEP is a highly informative statistic in

proteogenomics since a novel gene or splice-variant might only
be identified via a single PSM, and we therefore need to know
the likelihood of this being a correct match. Hence, it has
assisted the high-throughput identification of genes31 and is an
alternative to heuristics such as the somewhat arbitrary two-
peptide rule.42 However, most tools require a decoy database in
order to generate a null model, which allows tools such as
Qvality to estimate PEPs more accurately.47 Likewise,
PeptideProphet utilizes decoy databases to allow PEP
calculations that are free from parametric assumptions to
provide accurate PEPs for different search engines and data
sets.49,57

Six-Frame Databases Confound the Target−Decoy
Assumption

The source of the atypical statistical estimates generated from
the six-frame searches is not immediately obvious. Although
relative differences in target and decoy databases sizes can alter
the number of accepted PSMs at a given FDR threshold,53

thereby breaking the target−decoy assumption, this does not
apply here. Our target and decoy database sizes are matched in
all searches, including the six-frame searches. Indeed, any
difference between the number of unique target and decoy
peptides can be factored into the FDR calculation using a
normalization step;40,44 this is implemented in the Qvality
software used here for separate database searches. Regardless of
the metric used to estimate significance, the fewest accepted
PSMs are always observed in the six-frame database.
The unique feature of the six frame database is that only one

in six target sequences is likely to contain the “true” target and
most of the target database is inflated by sequences in the
‘wrong frame’. This could imbalance the distributions of target
and decoy PSM scores, which we investigate here.
Normally, a probability distribution of PSM scores would

have a tail to the right, corresponding to the correct target
PSMs.39 Figure 5 shows the distributions of reported target and
decoy Mascot scores for the top ranked PSMs identified in the
EORF, ESTScan2 and six-frame databases for separate target
and decoy database searches. It should be noted here that
Mascot does not report PSMs when there is no match
(presumably when there is no matching precursor ion or too
few matching fragment ions). Hence, in this work, statistics are
presented only on the reported PSMs. This has a significant
effect as, for example, 369 477 target PSMs are reported from
six-frame database searches compared to only 181 699 from
ESTScan2, although 403 820 spectra are searched in both cases
(see also Supporting Information Table S1).
The EORF and ESTSCan2 searches (Figure 5b,c) show a

clear difference between the reported target and decoy score

Figure 4. Estimating the proportion of true positive PSMs identified in
the six-frame database search. PSMs were considered to be ‘correct’ if
the reading frame contained the top-scoring match to an Ensembl56
protein through a BLASTX search. Plots show: (a) the percentage of
‘correct’ reading frame PSMs that fall below each of the three types of
q-values and PEP, and (b) the same percentage but plotted for local
qvality PEP bins of 0.01.
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distributions, with the expected tail on the right of high-scoring
PSMs that are likely to be correct (i.e., a low PEP or FDR).
However, this clear distinction is absent for the six-frame
database searches in Figure 5a, with median scores of 14.98 and
13.42 respectively for reported target and decoy PSMs. The
ESTScan2 median scores for reported target and decoy PSMs
are considerably different and better separated, at 19.33 and
10.77, respectively, with similar values for EORF. The increase
in the median target PSM score from six-frame database to
ESTScan2 appears counterintuitive since more peptides are
present in the six-frame database, including the vast majority of

those in the ESTScan2/EORF databases. However, as noted
above, considerably fewer target PSMs are reported by Mascot
for the ESTScan2 database compared to the six-frame one and
these are generally of higher score (which leads to an increased
median score), as is evident from Figure 5.
For the six-frame searches, the increase in the reported

median decoy PSM score stems from the increased number of
candidate sequences against which each spectrum can match.
Indeed, Mascot reports a greater number of candidate decoy
PSMs overall for the six-frame searches (363 236 compared to
117 982/127 415 in ESTScan/EORF searches). This in turn

Figure 5.Mascot ion score distributions for reported target and decoy PSMs. Plots show reported target and decoy PSMs ion score distributions, for
all rank 1 PSMs, when target and decoy databases were searched separately. Density plots were generated for: (a) standard six-frame database search,
(b) ESTScan2 search, and (c) EORF search. The number of reported PSMs from searches of 403 820 spectra against the individual databases are
also shown, demonstrating how fewer spectra are matched by Mascot for the smaller, ESTScan and EORF databases.
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would lead to more decoy PSMs out-competing their target
equivalents in a concatenated database search, potentially
generating more false negatives. This is indeed the case when
the cumulative frequency distributions of the target and decoy
PSM Mascot scores are considered for the six-frame searches in
comparison to ESTScan or EORF (see Supporting Information
Figure S2), where decoy PSMs are assigned higher scores in the
six frame database searches for both concatenated and separate
search strategies.
This inflation of the target database with ‘wrong frame’

sequences has consequences for FDR estimates. We illustrate
this in Table 2 where we consider a search against a

hypothetical standard database that produces 1000 true positive
target PSMs and 10 decoy PSMs. We then consider an inflated
database that contains the same target sequences plus extra
sequences (i.e., alternatively translated ‘wrong’ frames) that are
unlikely to be matched as true positives. We presume the same
1000 true PSMs will be returned from a search against this
database, but false positive matches (as estimated from decoy
PSMs) will likely increase (say to 20), particularly at modest
search engine scores. This is because the decoy database is
increased while the effective target database (i.e., “hit-able”
sequences) remains the same. The resulting FDR estimate is
then increased, leading to fewer accepted PSMs at the same
fixed cutoff.
This hypothesis is consistent with the data shown in Figure

5a where additional higher scoring decoy PSMs are identified
owing to the inflated nature of the six-frame database.
Conversely, the presence of the additional five ‘wrong frame’
target sequences increases the chances of assigning spectra to a
false positive target. Indeed, roughly twice as many spectra are
assigned to target PSMs by Mascot with reportable scores in
the six-frame searches. Somewhat counterintuitively this lowers
the median target PSM score (see Figure 5) as Mascot reports
more lower scoring PSMs, presumably from hits to the five
“wrong frame” sequences. Ultimately, this means that the PEP
estimates are increased because they depend on the relative
heights of the target and decoy distributions. Likewise, the six-
frame FDR will be increased because the decoy PSMs, with
relatively higher scores, would be encountered sooner when the
sorted list of scores is traversed from high to low during the
FDR calculation.
This is illustrated when comparing the ratio of target:decoy

PSMs in a concatenated search at a fixed Mascot score between
six-frame and ESTScan2 searches (see Supporting Information
Figure S3). Both distributions converge toward the expected
0.50 for PSMs with low Mascot scores, although a small bias
toward target PSMs remains for the six-frame database even at
scores below 5. However, generally, the six-frame ratio is lower,
particularly at ion scores above 15. This leads to increased
numbers of decoy PSMs, which in turn leads to an increased
estimate in false target PSMs and an increased FDR estimate.

The same effect is observed when considering the absolute
numbers of target and decoy PSMs in the six-frame database
compared to a subset of it composed of just the three forward
frames (see Supporting Information Figure S4). Although this
database is half the size, it contains most of the true target
PSMs (since most correct translations are in one of the forward
frames). The numbers of reported target PSMs are almost
identical between the two searches at all Mascot scores (with an
average ratio of 1.05:1), while there are 1.4× more decoy PSMs
on average in the six-frame search results.
The observations detailed above support the hypothesis

outlined in Table 2, that the inflated nature of the six-frame
translation database is the underlying reason for the over-
estimation of the FDR for the six-frame searches. However,
could this simply be a consequence of increased database size?
Since database size will affect FDR and PEP estimates, it has
been suggested that larger database sizes can reduce the
variance in estimates of the number of decoys (false) PSMs,
leading to better (more precise) estimates of significance.
However, we note that in general this leads to more
conservative estimates (see Supporting Information Figure
S5), consistent with previous observations.53 To confirm this,
we recalculated the q-value for PSMs drawn from a subset of
the six-frame database of identical size to ESTScan2, repeating
this 1000 times to generate an average FDR profile, shown in
Figure 6. This demonstrates how the atypical database

composition must also be influencing the FDR calculations,
since the six-frame subset q-value profile is more conservative
than the ESTScan2 search despite the fact the database sizes are
identical. The increased FDR for the six-frame searches is
therefore due both to database size and atypical composition.
This highlights the need to exercise caution when generating/
modifying proteogenomic databases in order to provide more
accurate statistical estimates.

Table 2. Hypothetical Target and Decoy PSMs Accepted at a
Fixed Score in a Standard and Inflated Database

target
PSMs

decoy
PSMs

FDR at fixed score
threshold

Standard database 1000 TPs
10 FPs 10 FPs = 10/1000 = 0.01

Inf lated database (e.g., six-
f rame)

1000 TPs
20 FPs 20 FPs = 20/1000 = 0.02

Figure 6. Effect of database size on FDR of the six-frame PSMs.
Subsets of sizes equal to the ESTScan2 database were randomly
sampled (1000 times) from six-frame database. The mean q-values
were calculated from the samples to give an FDR profile with FDRs
greater than the ESTScan2 PSMs, but lower than the six-frame PSMs.
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Equalizing the Target and Decoy Databases Improves the
Sensitivity for the Six-Frame Searches

To estimate accurate FDRs/PEPs, the ratio of target to decoy
sequences needs to be as close to 1:1 as possible, or at least
properly understood and quantified. We reasoned that reducing
the six-frame database to a single target and decoy sequence for
each EST contig would provide a more realistic and accurate
FDR estimate. A naiv̈e but simple way to achieve this is by
randomly selecting only one from each of the six target reading
frames for each EST contig to generate a random-f rame
database. A second approach is to select the single frame
containing the most PSMs to generate the top-hit-f rame
database. In both cases, a single target sequence is selected
from the EST contigs along with its reversed (decoy) sequence.
The associated PEPs were then recalculated for these modified
databases and compared to the equivalent values from the
standard six-frame searches, shown in Figure 7 and Table 3. As
expected, this has a marked effect on PEP estimates for
equivalent PSMs between the paired searches. Both methods
uniformly lower the PEP compared to equivalent six-frame
PSMs leading to additional unique peptide matches. Indeed,
although the random-f rame database has 83% of the original
sequences removed, the number of peptides matched is 657 in
excess of expectation at a PEP cutoff of 0.01, presuming that
only one-sixth of the original PSMs should remain. This is an
interesting finding as it shows that choosing a single frame,
effectively at random for many EST contigs, improves relative
sensitivity even though some “correct” frames will have been
removed by chance. This would not, of course, be a viable
strategy in practice since fewer PSMs overall are obtained and
many genuine PSMs will be lost, but it serves to illustrate the
point that less conservative statistical estimates can be achieved
by filtering the database.
We tested other approaches to improve sensitivity, exploiting

a priori knowledge on the EST contigs. Given that the direction

of sequencing is usually known in transcript libraries, we
observe that simply retaining just the forward three frames has
an advantage (three-f rames-forward), producing over a thousand
more unique peptides with PEPs of 0.02 or less (Table 3).
Similarly, considering homology to predict the mostly likely
coding frame improves performance. For the EST contigs with
BLASTX hits to Ensembl56, the single frame with the most
significant E-value was retained, to generate a six-f rame
predicted database. Figure 7 shows how this approach
significantly reduces the PEPs relative to the standard six-
frame searches, as do EORF and ESTScan2. It should be noted
though, that although the six-f rame-predicted database led to the
lowest PEP estimates, this approach yields fewer significant
PSMs compared to EORF and ESTScan2, shown in Table 3.

Figure 7. Comparison of equivalent PEPs from standard six-frame searches against alternate database searches. PEPs derived from several search
strategies are plotted against the six-frame equivalents, with the same sequence-spectra-Mascot score. (a) PEPs derived from simple filtering
approaches based on selection of a single frame by: random (random-f rame), the most PSMs (top-hit PSM), or the three forward frames, are plotted
against the six-frame PEP values. (b) PEPs derived from searches against the six-frame-predicted, ESTScan2 and EORF databases are plotted against
the six-frame equivalents. In both plots, direct equivalence of PEP values against the standard six-frame database searches is shown as a dashed line.
In all cases, selection of single frames, three forward frames, frame prediction and/or translation by EORF or ESTScan reduces the estimated PEP.

Table 3. Unique Peptide Identifications at Different PEP
Cutoffs Derived from Searches over Different Databasesa

PEP cutoff

0.01 0.02 number of target sequences

Six-f rame standard 4951 5887 512,916
Random-f rame 1483 1739 85,486
Three-f rames-forward 5654 7050 256,458
Top-hit-f rame 6624 8330 74,374
Six-f rame-predicted 5601 7251 20,670
ESTScan2 7325 8907 62,161
EORF 7146 8782 67,125

aSix-f rame standard refers to the standard, unfiltered six-frame
translation databases. Random-f rame refers to the subset of the six-
frame database where a single frame is selected randomly for each
contig. Three-f rames-forward refers to just the forward frames only.
The six-f rame-predicted database is produced by retaining only the
single frame from six for each contig that has the most significant
BLASTX hit to Ensembl proteins. Top-hit-f rame refers to the subset of
the six-frame database where the frame with the most PSMs is selected
for each contig.
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This highlights a downside to the BLASTX-filtering approach
in this instance; only about 22% of the EST contigs have
significant BLAST hits whereas EORF and ESTScan2 predict
protein sequences for the majority of them. The additional
peptide matches from EORF and ESTScan2 searches may
come from novel genes or isoforms that are not yet annotated
in the Ensembl56 known gene set.
Collectively, these results demonstrate a variety of

approaches to apply when considering proteogenomic searches
against nucleotide databases such as EST/cDNA or genomic
six-frame translations. Minimally, selecting one single candidate
reading frame from the six possible leads to superior FDR and
PEP estimates, and using empirical evidence to select one of the
six frames via BLASTX searches against existing protein
databases is better still. Nucleotide sequences that have no
significant BLASTX hits still need to be dealt with, but simple
strategies here can also be applied. For example, even weak
BLASTX hits can be used to suggest the most likely frame that
contains some level of coding features. Similarly, statistics such
as codon usage can suggest “protein-like” features that point to
the mostly likely frame. We note here that the “correct frame”
sequences share similar amino acid composition statistics with
Ensembl proteins (see Supporting Information Figure S6,
Table S1). Other good practice is evident in the literature, such
as the prot4EST pipeline which includes a rule-based approach
that identifies the longest ORF from the six-frame trans-
lations.58 Similarly, Adamidi et al.12 selected the three longest
ORFs from RNA-seq transcripts for database searching.
Another approach, which does not require sequence homology,
utilizes information about the experimental protocol used for
cloning and sequencing the mRNAs. One small-scale
proteomics study identified 51 novel seminal fluid proteins by
searching 2D-LC-MS data against only the forward frames of
translated UniGenes.59 When applied to shotgun proteomics
data this improves sensitivity relative to standard six-frame
searches, a trend we also note here. Our EST data is generated
from directional cloning and subsequent 5′-end sequencing of
chicken cDNAs, leading to a bias where 97% of the “correct”
frames from BLASTX searching are in frames one, two, or three
(see Supporting Information Figure S7). Searching against this
three-frame database leads to over 1000 additional peptide
identifications filtered at a PEP < 0.02 (Figure 7, Table 3). This
improved performance is likely the result of the reduction in
erroneous targets, which is reduced to two out of three in the 3-
frame search from five out of six. Although the performance is
inferior to the BLAST-filtered single-frame and ESTScan/
EORF searches, the three-frame approach can be used for all
EST contigs and not just those with BLASTX matches.
Moreover, this approach can be easily implemented for newly
sequenced genomes when there are no homologues annotated
within the clade, something that would create problems for
EORF/ESTScan2 as these tools require codon usage
information.
Ultimately, however, our most sensitive searches were

derived from the EST translation tools, ESTScan2 and
EORF, which generate a single translated sequence across the
most likely reading frames. The most effective search strategy
overall in terms of sensitivity involved the two database
searches using the FDRScore algorithm for combining multiple
search results.52

■ CONCLUSION
Our study has highlighted some of the pitfalls when searching
against nucleotide databases via six-frame translations and how
inflating the target database with incorrect sequences perturbs
FDR and PEP estimates. Although some methods exist for
reducing the peptide search space in proteogenomic studies,9,10

most do not formally consider the inherent biases that can arise
through the improper use of the target−decoy approach. We
show here that naiv̈e six-frame searching leads to over-
conservative statistics and potential loss of high-quality peptide
evidence for genomic annotation. This parallels any shotgun
experiment that searches against very large protein databases
(such as all of NCBI or UniProt), containing many “unhittable”
sequences from other species, which can also lead to
overestimated statistics and reduced sensitivity.
Although formally our results have been generated only from

assembled ESTs, we see no reason to suppose that the general
principles we observe should not apply to RNA-seq data or
similar nucleotide sequences such as from gene prediction
software or even raw genomic sequence. We recommend
proteogenomic practitioners consider the following redundancy
removal guidelines when searching against nucleotide data-
bases.

• Selection of most likely f rame based on PSMs. Retention of
the single frame (and its decoy) with most PSMs prior to
calculation of FDR/PEP provides less conservative
statistics, although multipass approaches need to be
performed appropriately.41,60,61

• Selection of most likely f rame based on homology. BLASTX
searches against a protein database, to identify the single
frame mostly likely to be coding removes redundancy
and improves sensitivity. If close homologues are not
available, even weak matches to known proteins should
enrich for coding sequence.

• Selection of f rame based on coding potential. When no
homologues are available, similarity in amino acid
composition or codon usage can help select the most
likely coding frame.

• Translation sof tware. Gene prediction (e.g., Augustus) or
EST translation software (such as ESTScan or EORF)
can overcome introns and frameshifts, as well as remove
redundancy. EST translators can be combined with
BLASTX data to improve accuracy.58

Ideally, we suggest that gene prediction or EST translation
software are likely to be most effective, since six possible frames
are reduced to one while frameshift mutations and introns can
be overcome. Moreover, presence of a transcript is bone f ide
evidence that a genomic region is at least transcribed and in
most cDNA libraries the sequence is normally largely free of
introns and the clonal direction is also known, so only three
forward frames need be considered.
One should not lose sight of the raison d’et̂re of

proteogenomics, to identify novel genes and novel gene
structure that may not exist in extant genome annotations or
transcriptome data sets. This necessitates searching against
translated genome sequence, and in such cases, use of a gene
prediction tool such as Augustus,62,63 perhaps used with
reduced stringency to capture some atypical genes/gene
structure, is preferable to raw searches against six-frames.
Alternately, if searching against raw genomic sequence we
suggest selecting one candidate translation (out of six) with the
closest homology with Ensembl or UniRef proteins (i.e., similar
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to the six-frame-predicted database), in addition to applying
compositional filters to limit regions unlikely to be coding. This
should improve the overall sensitivity of the searches while
improving the statistical modeling of incorrect PSMs.
It is also worth noting an additional downside to selecting a

single reading frame, when several true coding regions overlap
at a single genomic locus but only a single one is selected in
silico (the INK4/ARF locus is one such example). However,
this might be overcome by screening the six-frame database for
contigs that contain multiple high-confidence PSMs in different
reading frames. Equally, transcriptomic data might very well
capture the two independent but overlapping coding regions in
different clusters.
Finally, it should be stressed that care needs to be taken

when applying target−decoy strategies to shotgun proteomics
data and proteogenomics data in particular. As several authors
have pointed out, if the underlying database or search engine is
not compliant with the assumptions of the target−decoy
approach, significance values can be underestimated.41,43,60,61

This is particularly acute for multipass search strategies that
change the target−decoy structure between search phases.
Here, we ensure the numbers of candidate target and decoy
sequences in the database are the same, though we do favor
target sequences with certain properties (i.e., those likely to be
coding, have the most PSMs, etc.), which could introduce some
biases. Nevertheless, the evidence that standard six-frame
searches considerably overestimate FDRs/PEPs seems over-
whelming, which highlights the need for databases to be
checked for compliance with the target−decoy approach (in
addition to the search engines). It is clear that more work is
needed to produce better error models and databases to
develop more reliable statistical confidence estimates, which
would greatly benefit proteogenomics by helping to achieve a
more comprehensive representation of the proteome.
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