17 research outputs found

    Insight into the introduction of domestic cattle and the process of Neolithization to the Spanish region Galicia by genetic evidence

    Get PDF
    Domestic cattle were brought to Spain by early settlers and agricultural societies. Due to missing Neolithic sites in the Spanish region of Galicia, very little is known about this process in this region. We sampled 18 cattle subfossils from different ages and different mountain caves in Galicia, of which 11 were subject to sequencing of the mitochondrial genome and phylogenetic analysis, to provide insight into the introduction of cattle to this region. We detected high similarity between samples from different time periods and were able to compare the time frame of the first domesticated cattle in Galicia to data from the connecting region of Cantabria to show a plausible connection between the Neolithization of these two regions. Our data shows a close relationship of the early domesticated cattle of Galicia and modern cow breeds and gives a general insight into cattle phylogeny. We conclude that settlers migrated to this region of Spain from Europe and introduced common European breeds to Galicia

    Paleogenomic Evidence for Multi-generational Mixing between Neolithic Farmers and Mesolithic Hunter-Gatherers in the Lower Danube Basin

    Get PDF
    The transition from hunting and gathering to farming involved profound cultural and technological changes. In Western and Central Europe, these changes occurred rapidly and synchronously after the arrival of early farmers of Anatolian origin [1-3], who largely replaced the local Mesolithic hunter-gatherers [1, 4-6]. Further east, in the Baltic region, the transition was gradual, with little or no genetic input from incoming farmers [7]. Here we use ancient DNA to investigate the relationship between hunter-gatherers and farmers in the Lower Danube basin, a geographically intermediate area that is characterized by a rapid Neolithic transition but also by the presence of archaeological evidence that points to cultural exchange, and thus possible admixture, between hunter-gatherers and farmers. We recovered four human paleogenomes (1.1× to 4.1× coverage) from Romania spanning a time transect between 8.8 thousand years ago (kya) and 5.4 kya and supplemented them with two Mesolithic genomes (1.7× and 5.3×) from Spain to provide further context on the genetic background of Mesolithic Europe. Our results show major Western hunter-gatherer (WHG) ancestry in a Romanian Eneolithic sample with a minor, but sizeable, contribution from Anatolian farmers, suggesting multiple admixture events between hunter-gatherers and farmers. Dietary stable-isotope analysis of this sample suggests a mixed terrestrial/aquatic diet. Our results provide support for complex interactions among hunter-gatherers and farmers in the Danube basin, demonstrating that in some regions, demic and cultural diffusion were not mutually exclusive, but merely the ends of a continuum for the process of Neolithization.This research was supported by a European Research Council (ERC) Starting Grant (ERC-2010-StG 263441) to R.P. G.G.-F. was also supported by MSC Individual Fellowship (NeoGenHeritage, grant no. 655478). E.R.J. was supported by a Herchel Smith Research Fellowship. M.H. and A.M. were supported by ERC consolidator grants 310763 GeneFlow and 647797 LocalAdaptation, respectively. V.S. was supported by the Gates Cambridge Trust. The work of C.L. was undertaken through the Partnerships in Priority Areas Program PN II, developed with the support of MEN-UEFISCDI (project no. PN-II-PTPCCA-2013-4-2302). A.G.-D. is supported by the research project BIOGEOS (CGL2014-57209-P) of the Spanish MINECO. The research of P.A., M.D.G., and L.D. on Los Canes is currently supported by the project CoChange (HAR2014-51830-P) of the Spanish State Plan for R+D+i (MINECO)

    Isotopic signature in isolated south-western populations of European brown bear (Ursus arctos)

    Get PDF
    Abstract Stable isotope analysis of animal tissue samples is increasingly used to study the trophic ecology of target species. The isotopic signatures respond to the type of diet, but also to the environmental conditions of their habitat. In the case of omnivorous, seasonal or opportunistic feeding species, the interpretation of isotopic values is more complex, as it is largely determined by food selection, either due to individual choice or because of availability. We analysed C and N isotopes in brown bear (Ursus arctos) hair from four isolated populations of south-western Europe (Cantabrian, Pyrenees, Central Apennines and Alpine) accounting for the geographical and climatic differences among the four areas. We found inter-population differences in isotopic signatures that cannot be attributed to climatic differences alone, indicating that at least some bears from relatively higher altitude populations experiencing higher precipitation (Pyrenees) show a greater consumption of animal foods than those from lower altitudes (Cantabrian and Apennines). The quantification of isotopic niche space using Layman’s metrics identified significant similarities between the Cantabrian and Central Apennine samples that markedly differ from the Pyrenean and Alpine. Our study provides a baseline to allow further comparisons in isotopic niche spaces in a broad ranged omnivorous mammal, whose European distribution requires further conservation attention especially for southern isolated populations

    Isotopic signature in isolated south-western populations of European brown bear (Ursus arctos)

    Get PDF
    Stable isotope analysis of animal tissue samples is increasingly used to study the trophic ecology of target species. The isotopic signatures respond to the type of diet, but also to the environmental conditions of their habitat. In the case of omnivorous, seasonal or opportunistic feeding species, the interpretation of isotopic values is more complex, as it is largely determined by food selection, either due to individual choice or because of availability. We analysed C and N isotopes in brown bear (Ursus arctos) hair from four isolated populations of south-western Europe (Cantabrian, Pyrenees, Central Apennines and Alpine) accounting for the geographical and climatic differences among the four areas. We found inter-population differences in isotopic signatures that cannot be attributed to climatic differences alone, indicating that at least some bears from relatively higher altitude populations experiencing higher precipitation (Pyrenees) show a greater consumption of animal foods than those from lower altitudes (Cantabrian and Apennines). The quantification of isotopic niche space using Layman’s metrics identified significant similarities between the Cantabrian and Central Apennine samples that markedly differ from the Pyrenean and Alpine. Our study provides a baseline to allow further comparisons in isotopic niche spaces in a broad ranged omnivorous mammal, whose European distribution requires further conservation attention especially for southern isolated populations

    Partial genomic survival of cave bears in living brown bears

    Get PDF
    Although many large mammal species went extinct at the end of the Pleistocene epoch, their DNA may persist due to past episodes of interspecies admixture. However, direct empirical evidence of the persistence of ancient alleles remains scarce. Here, we present multifold coverage genomic data from four Late Pleistocene cave bears (Ursus spelaeus complex) and show that cave bears hybridized with brown bears (Ursus arctos) during the Pleistocene. We develop an approach to assess both the directionality and relative timing of gene flow. We find that segments of cave bear DNA still persist in the genomes of living brown bears, with cave bears contributing 0.9 to 2.4% of the genomes of all brown bears investigated. Our results show that even though extinction is typically considered as absolute, following admixture, fragments of the gene pool of extinct species can survive for tens of thousands of years in the genomes of extant recipient species

    Heavy reliance on plants for Romanian cave bears evidenced by amino acid nitrogen isotope analysis

    Get PDF
    Heavy reliance on plants is rare in Carnivora and mostly limited to relatively small species in subtropical settings. The feeding behaviors of extinct cave bears living during Pleistocene cold periods at middle latitudes have been intensely studied using various approaches including isotopic analyses of fossil collagen. In contrast to cave bears from all other regions in Europe, some individuals from Romania show exceptionally high ÎŽ15N values that might be indicative of meat consumption. Herbivory on plants with high ÎŽ15N values cannot be ruled out based on this method, however. Here we apply an approach using the ÎŽ15N values of individual amino acids from collagen that offsets the baseline ÎŽ15N variation among environments. The analysis yielded strong signals of reliance on plants for Romanian cave bears based on the ÎŽ15N values of glutamate and phenylalanine. These results could suggest that the high variability in bulk collagen ÎŽ15N values observed among cave bears in Romania reflects niche partitioning but in a general trophic context of herbivory

    The cave bear’s hibernation: reconstructing the physiology and behaviour of an extinct animal

    Get PDF
    When studying an extinct species such as the cave bear (Ursus spelaeus ROSENMÜLLER 1794), it is possible to apply a variety of molecular biology techniques such as the study of stable isotopes or mitochondrial DNA (mDNA) to infer patterns of behaviour or physiology that would otherwise remain concealed. Throughout Europe and along time, differences in the isotopic values (ή13C and ή15N) of cave bears arise from environmental differences and the Pleistocene climatic evolution. The climate determines the hibernation length, during which the cave bears undergo a particular physiology that can be related to an increase in ή15N during climate cooling. In order to verify whether hibernation affected the isotopic values, we compared cave bears in different ontogenetic stages. The results show that perinatal values reflect the values for mothers during hibernation, while juveniles show differences in maternal investment. A previous study in the literature based on complete mitochondrial DNA sequences of several individuals collected from closely situated caves showed that each cave housed, almost exclusively, a single lineage of haplotypes. This pattern suggests extreme fidelity to the birth site, or homing behaviour, and that cave bears formed stable maternal social groups, at least for the purpose of hibernation. Studies of this type offer unexpected data on the palaeobiology of this extinct animal
    corecore