269 research outputs found

    Field experiments with wild primates reveal no consistent dominance-based bias in social learning

    Get PDF
    Directed social learning suggests that information flows through social groups in a nonrandom way, with individuals biased to obtain information from certain conspecifics. A bias to copy the behaviour of more dominant individuals has been demonstrated in captive chimpanzees, Pan troglodytes, but has yet to be studied in any wild animal population. To test for this bias using a field experiment, one dominant and one low-ranking female in each of three groups of wild vervet monkeys, Chlorocebus aethiops pygerythrus, was trained on alternative methods of opening an 'artificial fruit'. Following 100 demonstrations from each model, fruits that could be opened either way were presented to each group and all openings were recorded. Overall, the dominant females were not attended to more than low-ranking females during the demonstrations, nor were their methods preferentially used in the test phase. We conclude that these monkeys show no overall bias to copy high-ranking models that would lead to a high-ranking model's behaviour becoming more prevalent in the group than a behaviour demonstrated by a low-ranking model. However, by contrast, there were significant effects of observer monkeys' rank and sex upon the likelihood they would match the dominant model. Additionally we found that the dominant models were more likely to stick to their initially learned method than were low-ranking model

    Social attention biases in juvenile wild vervet monkeys: implications for socialisation and social learning processes.

    Get PDF
    The concept of directed social learning predicts that social learning opportunities for an individual will depend on social dynamics, context and demonstrator identity. However, few empirical studies have examined social attention biases in animal groups. Sex-based and kinship-based biases in social learning and social attention towards females have been shown in a despotic and female philopatric primate: the vervet monkey (Chlorocebus pygerythrus). The present study examined social attention during the juvenile period. Social attention was recorded through 5-min focal observations during periods of natural foraging. Kin emerged as the most important focus of social attention in juveniles, intensified by biased spatial proximity towards matrilineal related members. The highest-ranking conspecifics were more frequently observed by juveniles than low-ranking ones. Additionally, younger and orphaned juveniles showed higher levels of social attention overall, compared to other age categories. No effect of the juvenile's hierarchical rank was detected, suggesting that the variation in social attention recorded reflects different biases and stages of social learning and socialisation, rather than social anxiety. Juvenile females tended to exhibit a dominance-based bias more strongly than did males. This might be explained by a greater emphasis on attaining social knowledge during juvenile socialisation in the philopatric sex. Moreover, despite a preferred association between juveniles, social attention was more often directed to adults, suggesting that adults may still be more often chosen as a target of attention independent of their dominance rank

    Seeking the Real Adam Smith and Milton Friedman

    Get PDF
    In this paper we will analyze the relationship between free market principles and ethics through an exploration of how too many business managers often approach the ideas of Adam Smith and Milton Friedman. In doing so, we aim to provide a thoughtful foundation for future discussions of how we ought to navigate this intersection. We briefly examine questions such as: What is the relationship between the “best” economy in terms of efficiency and the common good for society? Is pursuing one’s individual economic advantage the same as promoting the general interest? As we analyze and discuss these questions, specifically in the context of Smith and Friedman, we also make some alternative normative assertions, grounded in social welfare, about adopting a broader societal perspective for the purpose of business

    Population-specific call order in chimpanzee greeting vocal sequences

    Get PDF
    This study was funded by the Max Planck Society and the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program awarded to C.C. (grant agreement no. 679787) and ERC (Prilang GA283871) and by Leverhulme Trust Research Leadership Award. Core funding for the Taï Chimpanzee Project has been provided by the Max Planck Society since 1997 and for Budongo Conservation Field station by the Royal Zoological Society of Scotland.Primates rarely learn new vocalisations, but they can learn to use their vocalizations in different contexts. Such ‘vocal usage learning’, particularly in vocal sequences, is a hallmark of human language, but remains understudied in non-human primates. We assess usage learning in four wild chimpanzee communities of Taï and Budongo Forests by investigating population differences in call ordering of a greeting vocal sequence. Whilst in all groups, these sequences consisted of pant-hoots (long-distance contact call) and pant-grunts (short-distance submissive call), the order of the two calls differed across populations. Taï chimpanzees consistently commenced greetings with pant-hoots whereas Budongo chimpanzees started with pant-grunts. We discuss different hypotheses to explain this pattern and conclude that higher intra-group aggression in Budongo may have led to a local pattern of individuals signalling submission first. This highlights how within-species variation in social dynamics may lead to flexibility in call order production, possibly acquired via usage learning.Publisher PDFPeer reviewe

    Differential Regulation of GABABReceptor Trafficking by Different Modes ofN-methyl-d-aspartate (NMDA) Receptor Signaling

    Get PDF
    Inhibitory GABAB receptors (GABABRs) can down-regulate most excitatory synapses in the CNS by reducing postsynaptic excitability. Functional GABABRs are heterodimers of GABAB1 and GABAB2 subunits and here we show that the trafficking and surface expression of GABABRs is differentially regulated by synaptic or pathophysiological activation of NMDA receptors (NMDARs). Activation of synaptic NMDARs using a chemLTP protocol increases GABABR recycling and surface expression. In contrast, excitotoxic global activation of synaptic and extrasynaptic NMDARs by bath application of NMDA causes the loss of surface GABABRs. Intriguingly, exposing neurons to extreme metabolic stress using oxygen/glucose deprivation (OGD) increases GABAB1 but decreases GABAB2 surface expression. The increase in surface GABAB1 involves enhanced recycling and is blocked by the NMDAR antagonist AP5. The decrease in surface GABAB2 is also blocked by AP5 and by inhibiting degradation pathways. These results indicate that NMDAR activity is critical in GABABR trafficking and function and that the individual subunits can be separately controlled to regulate neuronal responsiveness and survival

    Visible light-driven photophysics and photochemistry of water-soluble metalloporphyrins

    Get PDF
    Metal ions can form normal (in-plane) metalloporphyrins, fitting into the central hole of the porphyrin ring, or several of them are located out of the ligand plane, resulting in sitting-atop (SAT) complexes. Kinetically inert water-soluble complexes of Mn(III), Co(III), and Ni(II) with 5,10,15,20-tetrakis(1-methylpyridinium-4-yl)porphyrin display a weak, short-lived fluorescence. This can be affected by elongation of the alkyl substituent and using micellar environment in the case of Mn(III) porphyrins. In the presence of a suitable electron donor (triethanolamine, TEOA) and acceptor (methylviologen, MV2+), these metalloporphyrins proved to be efficient photocatalysts transferring electrons between the ground-state donor and acceptor via outer-sphere mechanism. In these systems triplet excited-state Mn(III) and Co(III) porphyrins are dynamically quenched with TEOA. The Mn(II) and Co(II) complexes formed in this way need also photoexcitation for the transfer of electron to the ground-state acceptor. However, the triplet excited state of Ni(II)TMPyP4+ cannot be dynamically quenched with TEOA. Instead, this electron donor forms an associate with Ni(II)TMPyP4+ in a ground state equilibrium. The lifetime of the triplet excited state of this species is much longer than that of the nickel(II) porphyrin alone, and it can undergo an efficient dynamic oxidative quenching with MV2+. Thus, a one-step electron transfer can be realized between the electron donor and acceptor, generating MV•+, which can be utilized for hydrogen generation from water. Lanthanide(III) porphyrins are of typical SAT complexes, the photophysical and –chemical features of which can be tuned by the size of the metal center. Anionic, early lanthanide(III) mono- and bisporphyrin complexes exhibit very similar photoinduced properties as a consequence of a special type of aggregation, through the peripheral substituents. The rather slow formation of complexes and transformation between the mono- and bisporphyrins can be accelerated by the irradiation of the system. These by-processes play considerable roles beside the photoredox degradation and demetalation. Depending on the wavelength of irradiation, two types of photoproducts can appear: during the photolysis at the Soret-band, a radical type intermediate can be observed, which disappears in dark. However, irradiation at the Q-bands, generates the formation of a new, stable photoproduct

    Photophysical and photocatalytic behavior of nickel(II) 5,10,15,20-tetrakis(1-methylpyridinium-4-yl)porphyrin

    Get PDF
    Kinetically inert cationic Ni(II)TMPyP4+ (H2TMPyP4+ = 5,10,15,20-tetrakis(methylpyridinium-4-yl)porphyrin) displayed a characteristic fluorescence (τ = 1.2-1.4 ns, Φ = 2.0×10-3), which was quenched with triethanolamine (TEOA) in a static way. This complex proved to be an efficient photocatalyst in the system containing TEOA and methylviologen (MV2+) as electron donor and acceptor, respectively. Interestingly, however, deviating from the behavior of the analogous Co(III) and Mn(III) complexes in such a system, TEOA did not dinamically quench the triplet excited state of Ni(II)TMPyP4+ (τ = 6.31 μs), hence no reduction of the metal center occured upon irradition. Instead, in the presence of this electron donor (at 1×10-3M) the excited-state lifetime dramatically increased (to τ = 36.6 μs), indicating the formation of a Ni(II)TMPyP4+-TEOA associate. This longer-lived triplet was efficiently quenched by MV2+ (kq = 9.9×106 M-1s-1), leading to the formation of MV●+. The overall quantum yield of this one-step photoassisted electron transfer is considerably high (Φ = 0.011-0.013 at Soret-band irradiation). Hence, this system, combined with a suitable co-catalyst, may be applicable for visible light-driven hydrogen generation from water

    Social uncertainty promotes signal complexity during approaches in wild chimpanzees (Pan troglodytes verus) and mangabeys (Cercocebus atys atys)

    Get PDF
    The social complexity hypothesis for the evolution of communication posits that complex social environments require greater communication complexity for individuals to effectively manage their relationships. We examined how different socially uncertain contexts, reflecting an increased level of social complexity, relate to variation in signalling within and between two species, which display varying levels of fission-fusion dynamics (sympatric-living chimpanzees and sooty mangabeys, Taï National Park, Ivory Coast). Combined signalling may improve message efficacy, notably when involving different perception channels, thus may increase in moments of high social uncertainty. We examined the probability of individuals to emit no signal, single or multisensory or combined (complex) signals, during social approaches which resulted in non-agonistic outcomes. In both species, individuals were more likely to use more combined and multisensory signals in post-conflict approaches with an opponent than in other contexts. The clearest impact of social uncertainty on signalling complexity was observed during chimpanzee fusions, where the likelihood of using complex signals tripled relative to other contexts. Overall, chimpanzees used more multisensory signals than mangabeys. Social uncertainty may shape detected species differences in variation in signalling complexity, thereby supporting the hypothesis that social complexity, particularly associated with high fission-fusion dynamics, promotes signalling complexity

    Maternal effects on the development of vocal communication in wild chimpanzees

    Get PDF
    Early-life experiences, such as maternal care received, influence adult social integration and survival. We examine what changes to social behavior through ontogeny lead to these lifelong effects, particularly whether early-life maternal environment impacts the development of social communication. Chimpanzees experience prolonged social communication development. Focusing on a central communicative trait, the "pant-hoot" contact call used to solicit social engagement, we collected cross-sectional data on wild chimpanzees (52 immatures and 36 mothers). We assessed early-life socioecological impacts on pant-hoot rates across development, specifically: mothers' gregariousness, age, pant-hoot rates and dominance rank, maternal loss, and food availability, controlling for current maternal effects. We found that early-life maternal gregariousness correlated positively with offspring pant-hoot rates, while maternal loss led to reduced pant-hoot rates across development. Males had steeper developmental trajectories in pant-hoot rates than females. We demonstrate the impact of maternal effects on developmental trajectories of a rarely investigated social trait, vocal production
    corecore