623 research outputs found
Bayesian modelling of clusters of galaxies from multi-frequency pointed Sunyaev--Zel'dovich observations
We present a Bayesian approach to modelling galaxy clusters using
multi-frequency pointed observations from telescopes that exploit the
Sunyaev--Zel'dovich effect. We use the recently developed MultiNest technique
(Feroz, Hobson & Bridges, 2008) to explore the high-dimensional parameter
spaces and also to calculate the Bayesian evidence. This permits robust
parameter estimation as well as model comparison. Tests on simulated Arcminute
Microkelvin Imager observations of a cluster, in the presence of primary CMB
signal, radio point sources (detected as well as an unresolved background) and
receiver noise, show that our algorithm is able to analyse jointly the data
from six frequency channels, sample the posterior space of the model and
calculate the Bayesian evidence very efficiently on a single processor. We also
illustrate the robustness of our detection process by applying it to a field
with radio sources and primordial CMB but no cluster, and show that indeed no
cluster is identified. The extension of our methodology to the detection and
modelling of multiple clusters in multi-frequency SZ survey data will be
described in a future work.Comment: 12 pages, 7 figures, submitted to MNRA
Bayes-X: a Bayesian inference tool for the analysis of X-ray observations of galaxy clusters
We present the first public release of our Bayesian inference tool, Bayes-X,
for the analysis of X-ray observations of galaxy clusters. We illustrate the
use of Bayes-X by analysing a set of four simulated clusters at z=0.2-0.9 as
they would be observed by a Chandra-like X-ray observatory. In both the
simulations and the analysis pipeline we assume that the dark matter density
follows a spherically-symmetric Navarro, Frenk and White (NFW) profile and that
the gas pressure is described by a generalised NFW (GNFW) profile. We then
perform four sets of analyses. By numerically exploring the joint probability
distribution of the cluster parameters given simulated Chandra-like data, we
show that the model and analysis technique can robustly return the simulated
cluster input quantities, constrain the cluster physical parameters and reveal
the degeneracies among the model parameters and cluster physical parameters. We
then analyse Chandra data on the nearby cluster, A262, and derive the cluster
physical profiles. To illustrate the performance of the Bayesian model
selection, we also carried out analyses assuming an Einasto profile for the
matter density and calculated the Bayes factor. The results of the model
selection analyses for the simulated data favour the NFW model as expected.
However, we find that the Einasto profile is preferred in the analysis of A262.
The Bayes-X software, which is implemented in Fortran 90, is available at
http://www.mrao.cam.ac.uk/facilities/software/bayesx/.Comment: 22 pages, 11 figure
Detection of Cosmic Microwave Background Structure in a Second Field with the Cosmic Anisotropy Telescope
We describe observations at frequencies near 15 GHz of the second 2x2 degree
field imaged with the Cambridge Cosmic Anisotropy Telescope (CAT). After the
removal of discrete radio sources, structure is detected in the images on
characteristic scales of about half a degree, corresponding to spherical
harmonic multipoles in the approximate range l= 330--680. A Bayesian analysis
confirms that the signal arises predominantly from the cosmic microwave
background (CMB) radiation for multipoles in the lower half of this range; the
average broad-band power in a bin with centroid l=422 (theta = 51') is
estimated to be Delta_T/T=2.1^{+0.4}_{-0.5} x 10^{-5}. For multipoles centred
on l=615 (theta =35'), we find contamination from Galactic emission is
significant, and constrain the CMB contribution to the measured power in this
bin to be Delta_T/T <2.0 x 10^{-5} (1-sigma upper limit). These new results are
consistent with the first detection made by CAT in a completely different area
of sky. Together with data from other experiments, this new CAT detection adds
weight to earlier evidence from CAT for a downturn in the CMB power spectrum on
scales smaller than 1 degree. Improved limits on the values of H_0 and Omega
are determined using the new CAT data.Comment: 5 pages, 5 figures (gif), submitted to MNRA
A 6-12 GHz Analogue Lag-Correlator for Radio Interferometry
Aims: We describe a 6-12 GHz analogue correlator that has been developed for
use in radio interferometers. Methods: We use a lag-correlator technique to
synthesis eight complex spectral channels. Two schemes were considered for
sampling the cross-correlation function, using either real or complex
correlations, and we developed prototypes for both of them. We opted for the
``add and square'' detection scheme using Schottky diodes over the more
commonly used active multipliers because the stability of the device is less
critical. Results: We encountered an unexpected problem, in that there were
errors in the lag spacings of up to ten percent of the unit spacing. To
overcome this, we developed a calibration method using astronomical sources
which corrects the effects of the non-uniform sampling as well as gain error
and dispersion in the correlator.Comment: 14 pages, 21 figures, accepted for publication in A&
Mass and pressure constraints on galaxy clusters from interferometric SZ observations
Following on our previous study of an analytic parametric model to describe
the baryonic and dark matter distributions in clusters of galaxies with
spherical symmetry, we perform an SZ analysis of a set of simulated clusters
and present their mass and pressure profiles. The simulated clusters span a
wide range in mass, 2.0 x 10^14 Msun < M200 < 1.0 x 10^15Msun, and observations
with the Arcminute Microkelvin Imager (AMI) are simulated through their
Sunyaev- Zel'dovich (SZ) effect. We assume that the dark matter density follows
a Navarro, Frenk and White (NFW) profile and that the gas pressure is described
by a generalised NFW (GNFW) profile. By numerically exploring the probability
distributions of the cluster parameters given simulated interferometric SZ data
in the context of Bayesian methods, we investigate the capability of this model
and analysis technique to return the simulated clusters input quantities. We
show that considering the mass and redshift dependency of the cluster halo
concentration parameter is crucial in obtaining an unbiased cluster mass
estimate and hence deriving the radial profiles of the enclosed total mass and
the gas pressure out to r200.Comment: 5 pages, 2 tables, 3 figure
Radio Sources in Galaxy Clusters at 28.5 GHz
We present serendipitous detections of radio sources at 28.5 GHz (1 cm),
which resulted from our program to image thermal Sunyaev-Zeldovich (SZ) effect
in 56 galaxy clusters. We find 64 radio sources with fluxes down to 0.4 mJy,
and within 250 arcseconds from the pointing centers. The spectral indices (S ~
\nu^-\alpha) of 54 sources with published low frequency flux densities range
from -0.6 to 2 with a mean of 0.77, and a median of 0.84. Extending low
frequency surveys of radio sources towards galaxy clusters CL 0016+16, Abell
665, and Abell 2218 to 28.5 GHz, and selecting sources with 1.4 GHz flux
density greater than 7 mJy to form an unbiased sample, we find a mean spectral
index of 0.71 and a median of 0.71. We find 4 to 7 times more sources predicted
from a low frequency survey in areas without galaxy clusters. This excess
cannot be accounted for by gravitational lensing of a background radio
population by cluster potentials, indicating most of the detected sources are
associated with galaxy clusters. For the cluster Abell 2218, the presence of
unsubtracted radio sources with 28.5 GHz flux densities less than 0.5 mJy, can
only contribute to temperature fluctuations at a level of 10 to 25 \muK. The
corresponding error due to radio point source contamination in the Hubble
constant derived through a combined analysis of 28.5 GHz SZ images and X-ray
emission observations ranges from 1% to 6%.Comment: 18 pages, 8 figures, to appear in April 1998 issue of A
Further Sunyaev-Zel'dovich observations of two Planck ERCSC clusters with the Arcminute Microkelvin Imager
We present follow-up observations of two galaxy clusters detected blindly via
the Sunyaev-Zel'dovich (SZ) effect and released in the Planck Early Release
Compact Source Catalogue. We use the Arcminute Microkelvin Imager, a dual-array
14-18 GHz radio interferometer. After radio source subtraction, we find a SZ
decrement of integrated flux density -1.08+/-0.10 mJy toward PLCKESZ
G121.11+57.01, and improve the position measurement of the cluster, finding the
centre to be RA 12 59 36.4, Dec +60 04 46.8, to an accuracy of 20 arcseconds.
The region of PLCKESZ G115.71+17.52 contains strong extended emission, so we
are unable to confirm the presence of this cluster via the SZ effect.Comment: 4 tables, 3 figures, revised after referee's comments and resubmitted
to MNRA
A Multi-telescope Campaign on FRB 121102: Implications for the FRB Population
We present results of the coordinated observing campaign that made the first
subarcsecond localization of a Fast Radio Burst, FRB 121102. During this
campaign, we made the first simultaneous detection of an FRB burst by multiple
telescopes: the VLA at 3 GHz and the Arecibo Observatory at 1.4 GHz. Of the
nine bursts detected by the Very Large Array at 3 GHz, four had simultaneous
observing coverage at other observatories. We use multi-observatory constraints
and modeling of bursts seen only at 3 GHz to confirm earlier results showing
that burst spectra are not well modeled by a power law. We find that burst
spectra are characterized by a ~500 MHz envelope and apparent radio energy as
high as erg. We measure significant changes in the apparent
dispersion between bursts that can be attributed to frequency-dependent
profiles or some other intrinsic burst structure that adds a systematic error
to the estimate of DM by up to 1%. We use FRB 121102 as a prototype of the FRB
class to estimate a volumetric birth rate of FRB sources Mpc yr, where is the number of bursts per
source over its lifetime. This rate is broadly consistent with models of FRBs
from young pulsars or magnetars born in superluminous supernovae or long
gamma-ray bursts, if the typical FRB repeats on the order of thousands of times
during its lifetime.Comment: 17 pages, 7 figures. Submitted to AAS Journal
Searching for non-Gaussianity in the VSA data
We have tested Very Small Array (VSA) observations of three regions of sky
for the presence of non-Gaussianity, using high-order cumulants, Minkowski
functionals, a wavelet-based test and a Bayesian joint power
spectrum/non-Gaussianity analysis. We find the data from two regions to be
consistent with Gaussianity. In the third region, we obtain a 96.7% detection
of non-Gaussianity using the wavelet test. We perform simulations to
characterise the tests, and conclude that this is consistent with expected
residual point source contamination. There is therefore no evidence that this
detection is of cosmological origin. Our simulations show that the tests would
be sensitive to any residual point sources above the data's source subtraction
level of 20 mJy. The tests are also sensitive to cosmic string networks at an
rms fluctuation level of (i.e. equivalent to the best-fit observed
value). They are not sensitive to string-induced fluctuations if an equal rms
of Gaussian CDM fluctuations is added, thereby reducing the fluctuations due to
the strings network to rms . We especially highlight the usefulness
of non-Gaussianity testing in eliminating systematic effects from our data.Comment: Minor corrections; accepted for publication to MNRA
Looking for the S-Z Effect towards Distant ROSAT Clusters of Galaxies
We report on observations of the Sunyaev-Zeldovich effect towards X-ray ROSAT
clusters taken with a double channel (1.2 and 2 mm) photometer installed at the
focus of the 15m SEST antenna in Chile. This paper describes the first results
obtained for the high-z clusters S1077, A2744 and S295. Marginal detections
were found for A2744 and at 1 mm for S1077. We discuss these data in terms of
contamination of sources along the line of sight and give a constraint on the
amplitude of the kinematic effect.Comment: 17 pg Latex file (using aasms4.sty) gzip'd tar'd uuencoded file
including 1 ps figure, ApJ Letter in pres
- …
