18 research outputs found

    Development of a flexible modeling environment for evaluating subcortical auditory systems

    Get PDF
    Cochlear Synaptopathy (CS) is an emerging topic of hearing research that focuses on peripheral pathologies which leave pure-tone audiometric thresholds (PTA) unchanged but significantly impair threshold-independent hearing performance. Primary among the proposed mechanisms of CS is selective damage of low spontaneous rate (low SR) fibers of the auditory nerve (AN), yet no noninvasive quantitative measure of CS yet exists in humans. Recent work has established a relationship between Wave V latencies and a psychophysical measure of CS in humans, but current biophysical models do not fully account for the observed results. To begin to address the discrepancies between these experiments and biophysical models of hearing, a new comprehensive modeling tool was developed which allows parametric exploration of modeling space and direct comparison between major models of the auditory nerve and brainstem. More sophisticated models of the midbrain and brainstem were incorporated into the new modeling tool. Incorporating recent anatomical and electrophysiological results, which suggest a varying contribution of low-SR fibers for different audible frequencies, further addresses modeling efficacy

    SARS-CoV-2 Omicron-B.1.1.529 leads to widespread escape from neutralizing antibody responses

    Get PDF
    On 24th November 2021, the sequence of a new SARS-CoV-2 viral isolate Omicron-B.1.1.529 was announced, containing far more mutations in Spike (S) than previously reported variants. Neutralization titers of Omicron by sera from vaccinees and convalescent subjects infected with early pandemic Alpha, Beta, Gamma, or Delta are substantially reduced, or the sera failed to neutralize. Titers against Omicron are boosted by third vaccine doses and are high in both vaccinated individuals and those infected by Delta. Mutations in Omicron knock out or substantially reduce neutralization by most of the large panel of potent monoclonal antibodies and antibodies under commercial development. Omicron S has structural changes from earlier viruses and uses mutations that confer tight binding to ACE2 to unleash evolution driven by immune escape. This leads to a large number of mutations in the ACE2 binding site and rebalances receptor affinity to that of earlier pandemic viruses

    corti: version 0.9

    No full text
    M.S. Thesis: Modeling environment to explore cochlear synaptopathy with complex stimuli

    Cardiac Ablation Catheter Guidance by Means of a Single Equivalent Moving Dipole Inverse Algorithm

    No full text
    Background We developed and evaluated a novel system for guiding radiofrequency catheter ablation therapy of ventricular tachycardia. This guidance system employs an inverse solution guidance algorithm (ISGA) using a single equivalent moving dipole (SEMD) localization method. The method and system were evaluated in both a saline tank phantom model and in vivo animal (swine) experiments. Methods A catheter with two platinum electrodes spaced 3 mm apart was used as the dipole source in the phantom study. A 40-Hz sinusoidal signal was applied to the electrode pair. In the animal study, four to eight electrodes were sutured onto the right ventricle. These electrodes were connected to a stimulus generator delivering 1-ms duration pacing pulses. Signals were recorded from 64 electrodes, located either on the inner surface of the saline tank or on the body surface of the pig, and then processed by the ISGA to localize the physical or bioelectrical SEMD. Results In the phantom studies, the guidance algorithm was used to advance a catheter tip to the location of the source dipole. The distance from the final position of the catheter tip to the position of the target dipole was 2.22 ± 0.78 mm in real space and 1.38 ± 0.78 mm in image space (computational space). The ISGA successfully tracked the locations of electrodes sutured on the ventricular myocardium and the movement of an endocardial catheter placed in the animal's right ventricle. Conclusion In conclusion, we successfully demonstrated the feasibility of using an SEMD inverse algorithm to guide a cardiac ablation catheter.National Institutes of Health (U.S.) (Grant 4 R44H L079726-02)National Institute on Aging (Grant 1R21AG035128)National Institutes of Health (U.S.) (Grant 1RO1HL103961)Center for Integration of Medicine and Innovative Technolog
    corecore