4,215 research outputs found

    Implementing an empirical scalar constitutive relation for ice with flow-induced polycrystalline anisotropy in large-scale ice sheet models

    Get PDF
    The microstructural evolution that occurs in polycrystalline ice during deformation leads to the development of anisotropic rheological properties that are not adequately described by the most common, isotropic, ice flow relation used in large-scale ice sheet models – the Glen flow relation. We present a preliminary assessment of the implementation in the Ice Sheet System Model (ISSM) of a computationally-efficient, empirical, scalar, tertiary, anisotropic rheology (ESTAR). The effect of this anisotropic rheology on ice flow dynamics is investigated by comparing idealised simulations using ESTAR with those using the isotropic Glen flow relation, where the latter includes a flow enhancement factor. For an idealised embayed ice shelf, the Glen flow relation overestimates velocities by up to 17 % when using an enhancement factor equivalent to the maximum value prescribed by ESTAR. Importantly, no single Glen enhancement factor can accurately capture the spatial variations in flow over the ice shelf. For flow-line studies of idealised grounded flow over a bumpy topography or a sticky base – both scenarios dominated at depth by bed-parallel shear – the differences between simulated velocities using ESTAR and the Glen flow relation vary according to the value of the enhancement factor used to calibrate the Glen flow relation. These results demonstrate the importance of describing the anisotropic rheology of ice in a physically realistic manner, and have implications for simulations of ice sheet evolution used to reconstruct paleo-ice sheet extent and predict future ice sheet contributions to sea level

    Partial Covering Arrays: Algorithms and Asymptotics

    Full text link
    A covering array CA(N;t,k,v)\mathsf{CA}(N;t,k,v) is an N×kN\times k array with entries in {1,2,,v}\{1, 2, \ldots , v\}, for which every N×tN\times t subarray contains each tt-tuple of {1,2,,v}t\{1, 2, \ldots , v\}^t among its rows. Covering arrays find application in interaction testing, including software and hardware testing, advanced materials development, and biological systems. A central question is to determine or bound CAN(t,k,v)\mathsf{CAN}(t,k,v), the minimum number NN of rows of a CA(N;t,k,v)\mathsf{CA}(N;t,k,v). The well known bound CAN(t,k,v)=O((t1)vtlogk)\mathsf{CAN}(t,k,v)=O((t-1)v^t\log k) is not too far from being asymptotically optimal. Sensible relaxations of the covering requirement arise when (1) the set {1,2,,v}t\{1, 2, \ldots , v\}^t need only be contained among the rows of at least (1ϵ)(kt)(1-\epsilon)\binom{k}{t} of the N×tN\times t subarrays and (2) the rows of every N×tN\times t subarray need only contain a (large) subset of {1,2,,v}t\{1, 2, \ldots , v\}^t. In this paper, using probabilistic methods, significant improvements on the covering array upper bound are established for both relaxations, and for the conjunction of the two. In each case, a randomized algorithm constructs such arrays in expected polynomial time

    Measuring Metacognition in Cancer: Validation of the Metacognitions Questionnaire 30 (MCQ-30)

    Get PDF
    Objective The Metacognitions Questionnaire 30 assesses metacognitive beliefs and processes which are central to the metacognitive model of emotional disorder. As recent studies have begun to explore the utility of this model for understanding emotional distress after cancer diagnosis, it is important also to assess the validity of the Metacognitions Questionnaire 30 for use in cancer populations. Methods 229 patients with primary breast or prostate cancer completed the Metacognitions Questionnaire 30 and the Hospital Anxiety and Depression Scale pre-treatment and again 12 months later. The structure and validity of the Metacognitions Questionnaire 30 were assessed using factor analyses and structural equation modelling. Results Confirmatory and exploratory factor analyses provided evidence supporting the validity of the previously published 5-factor structure of the Metacognitions Questionnaire 30. Specifically, both pre-treatment and 12 months later, this solution provided the best fit to the data and all items loaded on their expected factors. Structural equation modelling indicated that two dimensions of metacognition (positive and negative beliefs about worry) were significantly associated with anxiety and depression as predicted, providing further evidence of validity. Conclusions These findings provide initial evidence that the Metacognitions Questionnaire 30 is a valid measure for use in cancer populations

    Caenorhabditis elegans dnj-14, the orthologue of the DNAJC5 gene mutated in adult onset neuronal ceroid lipofuscinosis, provides a new platform for neuroprotective drug screening and identifies a SIR-2.1-independent action of resveratrol

    Get PDF
    Adult onset neuronal lipofuscinosis (ANCL) is a human neurodegenerative disorder characterized by progressive neuronal dysfunction and premature death. Recently, the mutations that cause ANCL were mapped to the DNAJC5 gene, which encodes cysteine string protein alpha. We show here that mutating dnj-14, the Caenorhabditis elegans orthologue of DNAJC5, results in shortened lifespan and a small impairment of locomotion and neurotransmission. Mutant dnj-14 worms also exhibited age-dependent neurodegeneration of sensory neurons, which was preceded by severe progressive chemosensory defects. A focussed chemical screen revealed that resveratrol could ameliorate dnj-14 mutant phenotypes, an effect mimicked by the cAMP phosphodiesterase inhibitor, rolipram. In contrast to other worm neurodegeneration models, activation of the Sirtuin, SIR-2.1, was not required, as sir-2.1; dnj-14 double mutants showed full lifespan rescue by resveratrol. The Sirtuin-independent neuroprotective action of resveratrol revealed here suggests potential therapeutic applications for ANCL and possibly other human neurodegenerative diseases

    Fragments of the earliest land plants

    Get PDF
    The earliest fossil evidence for land plants comes from microscopic dispersed spores. These microfossils are abundant and widely distributed in sediments, and the earliest generally accepted reports are from rocks of mid-Ordovician age (Llanvirn, 475 million years ago). Although distribution, morphology and ultrastructure of the spores indicate that they are derived from terrestrial plants, possibly early relatives of the bryophytes, this interpretation remains controversial as there is little in the way of direct evidence for the parent plants. An additional complicating factor is that there is a significant hiatus between the appearance of the first dispersed spores and fossils of relatively complete land plants (megafossils): spores predate the earliest megafossils (Late Silurian, 425 million year ago) by some 50 million years. Here we report the description of spore-containing plant fragments from Ordovician rocks of Oman. These fossils provide direct evidence for the nature of the spore-producing plants. They confirm that the earliest spores developed in large numbers within sporangia, providing strong evidence that they are the fossilized remains of bona fide land plants. Furthermore, analysis of spore wall ultrastructure supports liverwort affinities

    Vocation, Belongingness, and Balance: A Qualitative Study of Veterinary Student Well-Being

    Get PDF
    An elevated risk for suicide among veterinarians has stimulated research into the mental health of the veterinary profession, and more recently attention has turned to the veterinary student population. This qualitative study sought to explore UK veterinary students' perceptions and experiences of university life, and to consider how these may affect well-being. Semi-structured interviews were conducted with 18 students from a single UK school who were purposively selected to include perspectives from male, female, graduate-entry, standard-entry (straight from high school), and widening participation students across all 5 years of the program. Three main themes were identified: a deep-rooted vocation, navigating belongingness, and finding balance. Participants described a long-standing goal of becoming a veterinarian, with a determination reflected by often circuitous routes to veterinary school and little or no consideration of alternatives. Although some had been motivated by a love of animals, others were intrinsically interested in the scientific and problem-solving challenges of veterinary medicine. Most expressed strong feelings of empathy with animal owners. The issue of belongingness was central to participants' experiences, with accounts reflecting their efforts to negotiate a sense of belongingness both in student and professional communities. Participants also frequently expressed a degree of acceptance of poor balance between work and relaxation, with indications of a belief that this imbalance could be rectified later. This study helps highlight future avenues for research and supports initiatives aiming to nurture a sense of collegiality among veterinary students as they progress through training and into the profession

    Closing the sea surface mixed layer temperature budget from in situ observations alone: Operation Advection during BoBBLE

    Get PDF
    Sea surface temperature (SST) is a fundamental driver of tropical weather systems such as monsoon rainfall and tropical cyclones. However, understanding of the factors that control SST variability is lacking, especially during the monsoons when in situ observations are sparse. Here we use a ground-breaking observational approach to determine the controls on the SST variability in the southern Bay of Bengal. We achieve this through the first full closure of the ocean mixed layer energy budget derived entirely from in situ observations during the Bay of Bengal Boundary Layer Experiment (BoBBLE). Locally measured horizontal advection and entrainment contribute more significantly than expected to SST evolution and thus oceanic variability during the observation period. These processes are poorly resolved by state-of-the-art climate models, which may contribute to poor representation of monsoon rainfall variability. The novel techniques presented here provide a blueprint for future observational experiments to quantify the mixed layer heat budget on longer time scales and to evaluate these processes in models

    On renormalization group flows and the a-theorem in 6d

    Full text link
    We study the extension of the approach to the a-theorem of Komargodski and Schwimmer to quantum field theories in d=6 spacetime dimensions. The dilaton effective action is obtained up to 6th order in derivatives. The anomaly flow a_UV - a_IR is the coefficient of the 6-derivative Euler anomaly term in this action. It then appears at order p^6 in the low energy limit of n-point scattering amplitudes of the dilaton for n > 3. The detailed structure with the correct anomaly coefficient is confirmed by direct calculation in two examples: (i) the case of explicitly broken conformal symmetry is illustrated by the free massive scalar field, and (ii) the case of spontaneously broken conformal symmetry is demonstrated by the (2,0) theory on the Coulomb branch. In the latter example, the dilaton is a dynamical field so 4-derivative terms in the action also affect n-point amplitudes at order p^6. The calculation in the (2,0) theory is done by analyzing an M5-brane probe in AdS_7 x S^4. Given the confirmation in two distinct models, we attempt to use dispersion relations to prove that the anomaly flow is positive in general. Unfortunately the 4-point matrix element of the Euler anomaly is proportional to stu and vanishes for forward scattering. Thus the optical theorem cannot be applied to show positivity. Instead the anomaly flow is given by a dispersion sum rule in which the integrand does not have definite sign. It may be possible to base a proof of the a-theorem on the analyticity and unitarity properties of the 6-point function, but our preliminary study reveals some difficulties.Comment: 41 pages, 5 figure

    Cytochemical techniques and energy-filtering transmission electron microscopy applied to the study of parasitic protozoa

    Get PDF
    The study of parasitic protozoa plays a major role in cell biology, biochemistry and molecular biology. Numerous cytochemical techniques have been developed in order to unequivocally identify the nature of subcellular compartments. Enzyme and immuno-cytochemistry allow the detection of, respectively, enzymatic activity products and antigens in particular sites within the cell. Energy-filtering transmission electron microscopy permits the detection of specific elements within such compartments. These approaches are particularly useful for studies employing antimicrobial agents where cellular compartments may be destroyed or remarkably altered and thus hardly identified by standard methods of observation. In this regard cytochemical and spectroscopic techniques provide valuable data allowing the determination of the mechanisms of action of such compounds

    Cross-species gene expression analysis of species specific differences in the preclinical assessment of pharmaceutical compounds

    Get PDF
    Animals are frequently used as model systems for determination of safety and efficacy in pharmaceutical research and development. However, significant quantitative and qualitative differences exist between humans and the animal models used in research. This is as a result of genetic variation between human and the laboratory animal. Therefore the development of a system that would allow the assessment of all molecular differences between species after drug exposure would have a significant impact on drug evaluation for toxicity and efficacy. Here we describe a cross-species microarray methodology that identifies and selects orthologous probes after cross-species sequence comparison to develop an orthologous cross-species gene expression analysis tool. The assumptions made by the use of this orthologous gene expression strategy for cross-species extrapolation is that; conserved changes in gene expression equate to conserved pharmacodynamic endpoints. This assumption is supported by the fact that evolution and selection have maintained the structure and function of many biochemical pathways over time, resulting in the conservation of many important processes. We demonstrate this cross-species methodology by investigating species specific differences of the peroxisome proliferatoractivator receptor (PPAR) a response in rat and human
    corecore