200 research outputs found

    Electronic Civil Disobedience and Symbolic Power

    Get PDF

    Introduction

    Get PDF

    Introduction

    Get PDF

    Star formation in the merging Galaxy NGC3256

    Get PDF
    The central 5 kpc of the ultra-luminous merging galaxy NGC 3256 was mapped at J, H, K, L, and 10 micrometer, and a 2 micrometer spectra of the nuclear region was obtained. This data was used to identify and characterize the super starburst which has apparently been triggered and fuelled by the merger of two gas rich galaxies. It is also shown that the old stellar population has relaxed into a single spheroidal system, and that a supernova driven wind might eventually drive any remaining gas from the system to leave a relic which will be indistinguishable from an elliptical galaxy

    A Spitzer Space Telescope study of SN 2002hh: an infrared echo from a Type IIP supernova

    Get PDF
    We present late-time (590-994 d) mid-IR photometry of the normal, but highly-reddened Type IIP supernova SN 2002hh. Bright, cool, slowly-fading emission is detected from the direction of the supernova. Most of this flux appears not to be driven by the supernova event but instead probably originates in a cool, obscured star-formation region or molecular cloud along the line-of-sight. We also show, however, that the declining component of the flux is consistent with an SN-powered IR echo from a dusty progenitor CSM. Mid-IR emission could also be coming from newly-condensed dust and/or an ejecta/CSM impact but their contributions are likely to be small. For the case of a CSM-IR echo, we infer a dust mass of as little as 0.036 M(solar) with a corresponding CSM mass of 3.6(0.01/r(dg))M(solar) where r(dg) is the dust-to-gas mass ratio. Such a CSM would have resulted from episodic mass loss whose rate declined significantly about 28,000 years ago. Alternatively, an IR echo from a surrounding, dense, dusty molecular cloud might also have been responsible for the fading component. Either way, this is the first time that an IR echo has been clearly identified in a Type IIP supernova. We find no evidence for or against the proposal that Type IIP supernovae produce large amounts of dust via grain condensation in the ejecta. However, within the CSM-IR echo scenario, the mass of dust derived implies that the progenitors of the most common of core-collapse supernovae may make an important contribution to the universal dust content.Comment: 41 pages, 11 figures, 4 tables, accepted for publication in Astrophysical Journal (References corrected

    Constraining the physical properties of Type II-P supernovae using nebular phase spectra

    Full text link
    We present a study of the nebular phase spectra of a sample of Type II-Plateau supernovae with identified progenitors or restrictive limits. The evolution of line fluxes, shapes, and velocities are compared within the sample, and interpreted by the use of a spectral synthesis code. The small diversity within the dataset can be explained by strong mixing occurring during the explosion, and by recognising that most lines have significant contributions from primordial metals in the H envelope, which dominates the total ejecta mass in these type of objects. In particular, when using the [O I] 6300, 6364 Angstrom doublet for estimating the core mass of the star, care has to be taken to account for emission from primordial O in the envelope. Finally, a correlation between the H-alpha line width and the mass of 56Ni is presented, suggesting that higher energy explosions are associated with higher 56Ni production.Comment: 18 pages, 15 figures, accepted for publication in MNRA

    Optical and infrared observations of the Type IIP SN2002hh from day 3 to 397

    Full text link
    We present optical and infrared (IR) observations of the type IIP SN2002hh from 3 to 397 days after explosion. The optical spectroscopic (4-397d) and photometric (3-278d) data are complemented by spectroscopic (137-381d) and photometric (137-314d) data acquired at IR wavelengths. This is the first time L-band spectra have ever been successfully obtained for a supernova at a distance beyond the Local Group. The VRI light curves in the first 40 days reveal SN2002hh to be a SN IIP (plateau) - the most common of all core-collapse supernovae. SN2002hh is one of the most highly extinguished supernovae ever investigated. To provide a good match between its early-time spectrum and a coeval spectrum of the Type IIP SN1999em, as well as maintaining consistency with KI interstellar absorption, we invoke a 2-component extinction model. One component is due to the combined effect of the interstellar medium of our Milky Way Galaxy and the SN host galaxy, while the other component is due to a "dust pocket" where the grains have a mean size smaller than in the interstellar medium. The early-time optical light curves of SNe 1999em and 2002hh are generally well-matched, as are the radioactive tails of these two SNe and SN1987A. The late-time similarity of the SN2002hh optical light curves to those of SN1987A, together with measurements of the optical/IR luminosity and [FeII] 1.257mu emission indicate that 0.07 +- 0.02 Msun of Ni 56 was ejected by SN2002hh. [... ABRIDGED...] From the [OI] 6300,6364 A doublet luminosity we infer a 16-18 Msun main-sequence progenitor star. The progenitor of SN2002hh was probably a red supergiant with a substantial, dusty wind.Comment: 32 pages, 30 figures, accepted for publication in MNRA

    A Search for Infrared Emission from Core-Collapse Supernovae at the Transitional Phase

    Full text link
    Most of the observational studies of supernova (SN) explosions are limited to early phases (< a few yr after the explosion) of extragalactic SNe and observations of SN remnants (> 100 yr) in our Galaxy or very nearby galaxies. SNe at the epoch between these two, which we call "transitional" phase, have not been explored in detail except for several extragalactic SNe including SN 1987A in the Large Magellanic Cloud. We present theoretical predictions for the infrared (IR) dust emissions by several mechanisms; emission from dust formed in the SN ejecta, light echo by circumstellar and interstellar dust, and emission from shocked circumstellar dust. We search for IR emission from 6 core-collapse SNe at the transitional phase in the nearby galaxies NGC 1313, NGC 6946, and M101 by using the data taken with the AKARI satellite and Spitzer. Among 6 targets, we detect the emission from SN 1978K in NGC 1313. SN 1978K is associated with 1.3 x 10^{-3} Msun of silicate dust. We show that, among several mechanisms, the shocked circumstellar dust is the most probable emission source to explain the IR emission observed for CSM-rich SN 1978K. IR emission from the other 5 objects is not detected. Our current observations are sensitive to IR luminosity of > 10^{38} erg s^{-1}, and the non-detection of SN 1962M excludes the existence of the shocked circumstellar dust for a high gas mass-loss rate of sim 10^{-4} Msun yr^{-1}. Observations of SNe at the transitional phase with future IR satellites will fill the gap of IR observations of SNe with the age of 10-100 years, and give a new opportunity to study the circumstellar and interstellar environments of the progenitor, and possibly dust formation in SNe.Comment: Accepted for publication in ApJ, 14 page
    • …
    corecore