310 research outputs found

    \u3cem\u3eVibrio cholerae\u3c/em\u3e Exploits Sub-Lethal Concentrations of a Competitor-Produced Antibiotic to Avoid Toxic Interactions

    Get PDF
    Vibrio cholerae is a human pathogenic marine bacterium inhabiting coastal regions and is vectored into human food and water supplies via attachment to particles including detritus, phytoplankton, and zooplankton. Particle colonization by the pathogen is inhibited by an antagonistic interaction with the particle-associated Vibrionales bacterium SWAT3, a producer of the antibiotic andrimid. By analyzing the individual movement behaviors of V. cholerae exposed to a gradient of andrimid in a microfluidics device, we show that the pathogen has a concentration dependent avoidance response to sub-lethal concentrations of the pure antibiotic and to the metabolites produced by a growing colony of SWAT3-wild-type. This avoidance behavior includes a 25% increase in swimming speeds, 30% increase in run lengths, and a shift in the direction of the bacteria away from the andrimid source. Consequently, these behavioral shifts at low concentrations of andrimid would lead to higher diffusivity and result in the dispersion of bacteria away from the competitor and source of the antibiotic. Such alterations in motility were not elicited in response to a non-andrimid-producing SWAT3 mutant, suggesting andrimid may be a negative effector of chemotaxis for V. cholerae. The behavioral response of colonizing bacteria to sub-inhibitory concentrations of competitor-produced antibiotics is one mechanism that can influence microbial diversity and interspecific competition on particles, potentially affecting human health in coastal communities and element cycling in the ocean

    Physical and optical properties of phytoplankton-rich layers in a coastal fjord: a step toward prediction and strategic sampling of plankton patchiness

    Get PDF
    Dense aggregations of phytoplankton in layers or patches alter the optical and physical properties of the water column and result in significant heterogeneity in trophic and demographic rates of local plankton populations. Determining the factors driving patch formation, persistence, intensity, and dissipation is key to understanding the ramifications of plankton patchiness in marine systems. Regression and multi-parametric statistical analyses were used to identify the physical and optical properties associated with 71 phytoplankton-rich layers (PRLs) identified from 158 CTD profiles collected between 2008 and 2010 in East Sound, Washington, USA. Generalized additive models (GAMs) were used to explore water column properties associated with and characterizing PRLs. Patch presence was associated with increasing water column stability represented by the Brunt-Väisälä frequency (N2), Thorpe scale (Lt), and turbulent energy dissipation rate (e). A predictive regression identified patch presence with 100% accuracy when log10(N2) = -1 and 70% of the cases when log10(e) = -3. A GAM of passively measured variables, which did not include fluorescence, was able to model patch intensity with considerable agreement (R2 = 0.58), and the fit was improved by including fluorescence (R2 = 0.69). Fluorescence alone was an insufficient predictor of PRLs, due in part to the influence of non-photochemical quenching (NPQ) in surface waters and the wide range of fluorescence intensities observed. The results show that a multi-parametric approach was necessary to characterize phytoplankton patches and that physical structure, resulting in steep gradients in bio-optical properties, hold greater predictive power than bio-optical properties alone. Integration of these analytical approaches will aid theoretical studies of phytoplankton patchiness but also improve sampling strategies in the field that utilize autonomous, in situ instrumentatio

    Evaluation of diagnostic pigments to estimate phytoplankton size classes

    Get PDF
    Limnology and Oceanography: Methods published by Wiley Periodicals LLC. on behalf of Association for the Sciences of Limnology and Oceanography. Phytoplankton accessory pigments are commonly used to estimate phytoplankton size classes, particularly during development and validation of biogeochemical models and satellite ocean color-based algorithms. The diagnostic pigment analysis (DPA) is based on bulk measurements of pigment concentrations and relies on assumptions regarding the presence of specific pigments in different phytoplankton taxonomic groups. Three size classes are defined by the DPA: picoplankton, nanoplankton, and microplankton. Until now, the DPA has not been evaluated against an independent approach that provides phytoplankton size calculated on a per-cell basis. Automated quantitative cell imagery of microplankton and some nanoplankton, used in combination with conventional flow cytometry for enumeration of picoplankton and nanoplankton, provide a novel opportunity to perform an independent evaluation of the DPA. Here, we use a data set from the North Atlantic Ocean that encompasses all seasons and a wide range of chlorophyll concentrations (0.18–5.14 mg m−3). Results show that the DPA overestimates microplankton and picoplankton when compared to cytometry data, and subsequently underestimates the contribution of nanoplankton to total biomass. In contrast to the assumption made by the DPA that the microplankton size class is largely made up of diatoms and dinoflagellates, imaging-in-flow cytometry shows significant presence of diatoms and dinoflagellates in the nanoplankton size class. Additionally, chlorophyll b is commonly attributed solely to picoplankton by the DPA, but Chl b-containing phytoplankton are observed with imaging in both nanoplankton and microplankton size classes. We suggest revisions to the DPA equations and application of uncertainties when calculating size classes from diagnostic pigments

    Bio-GO-SHIP: The Time is Right to Establish Global Repeat Sections of Ocean Biology

    Get PDF
    In this article, we present Bio-GO-SHIP, a new ocean observing program that will incorporate sustained and consistent global biological ocean observations into the Global Ocean Ship-based Hydrographic Investigations Program (GO-SHIP). The goal of Bio-GO-SHIP is to produce systematic and consistent biological observations during global ocean repeat hydrographic surveys, with a particular focus on the planktonic ecosystem. Ocean plankton are an essential component of the earth climate system, form the base of the oceanic food web and thereby play an important role in influencing food security and contributing to the Blue Economy. Despite its importance, ocean biology is largely under-sampled in time and space compared to physical and chemical properties. This lack of information hampers our ability to understand the role of plankton in regulating biogeochemical processes and fueling higher trophic levels, now and in future ocean conditions. Traditionally, many of the methods used to quantify biological and ecosystem essential ocean variables (EOVs), measures that provide valuable information on the ecosystem, have been expensive and labor- and time-intensive, limiting their large-scale deployment. In the last two decades, new technologies have been developed and matured, making it possible to greatly expand our biological ocean observing capacity. These technologies, including cell imaging, bio-optical sensors and \u27omic tools, can be combined to provide overlapping measurements of key biological and ecosystem EOVs. New developments in data management and open sharing can facilitate meaningful synthesis and integration with concurrent physical and chemical data. Here we outline how Bio-GO-SHIP leverages these technological advances to greatly expand our knowledge and understanding of the constituents and function of the global ocean plankton ecosystem

    Bio-GO-SHIP: the time is right to establish global repeat sections of ocean biology

    Get PDF
    © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Clayton, S., Alexander, H., Graff, J. R., Poulton, N. J., Thompson, L. R., Benway, H., Boss, E., & Martiny, A. Bio-GO-SHIP: the time is right to establish global repeat sections of ocean biology. Frontiers in Marine Science, 8, (2022): 767443, https://doi.org/10.3389/fmars.2021.767443.In this article, we present Bio-GO-SHIP, a new ocean observing program that will incorporate sustained and consistent global biological ocean observations into the Global Ocean Ship-based Hydrographic Investigations Program (GO-SHIP). The goal of Bio-GO-SHIP is to produce systematic and consistent biological observations during global ocean repeat hydrographic surveys, with a particular focus on the planktonic ecosystem. Ocean plankton are an essential component of the earth climate system, form the base of the oceanic food web and thereby play an important role in influencing food security and contributing to the Blue Economy. Despite its importance, ocean biology is largely under-sampled in time and space compared to physical and chemical properties. This lack of information hampers our ability to understand the role of plankton in regulating biogeochemical processes and fueling higher trophic levels, now and in future ocean conditions. Traditionally, many of the methods used to quantify biological and ecosystem essential ocean variables (EOVs), measures that provide valuable information on the ecosystem, have been expensive and labor- and time-intensive, limiting their large-scale deployment. In the last two decades, new technologies have been developed and matured, making it possible to greatly expand our biological ocean observing capacity. These technologies, including cell imaging, bio-optical sensors and 'omic tools, can be combined to provide overlapping measurements of key biological and ecosystem EOVs. New developments in data management and open sharing can facilitate meaningful synthesis and integration with concurrent physical and chemical data. Here we outline how Bio-GO-SHIP leverages these technological advances to greatly expand our knowledge and understanding of the constituents and function of the global ocean plankton ecosystem.The Bio-GO-SHIP pilot program was funded under the National Oceanographic Partnership Program as an inter-agency partnership between NOAA and NASA, with the US Integrated Ocean Observing System and NOAA's Global Ocean Monitoring and Observing program (HA, SC, JG, AM, and NP). HA was supported by a WHOI Independent Research and Development award. AM was supported by funding from NSF OCE-1848576 and 1948842 and NASA 80NSSC21K1654. JG was funded by NASA from grants 80NSSC17K0568 and NNX15AAF30G. LT was supported by award NA06OAR4320264 06111039 to the Northern Gulf Institute by NOAA's Office of Oceanic and Atmospheric Research, U.S. Department of Commerce

    Small phytoplankton dominate western North Atlantic biomass

    Get PDF
    The North Atlantic phytoplankton spring bloom is the pinnacle in an annual cycle that is driven by physical, chemical, and biological seasonality. Despite its important contributions to the global carbon cycle, transitions in plankton community composition between the winter and spring have been scarcely examined in the North Atlantic. Phytoplankton composition in early winter was compared with latitudinal transects that captured the subsequent spring bloom climax. Amplicon sequence variants (ASVs), imaging flow cytometry, and flow-cytometry provided a synoptic view of phytoplankton diversity. Phytoplankton communities were not uniform across the sites studied, but rather mapped with apparent fidelity onto subpolar- and subtropical-influenced water masses of the North Atlantic. At most stations, cells < 20-µm diameter were the main contributors to phytoplankton biomass. Winter phytoplankton communities were dominated by cyanobacteria and pico-phytoeukaryotes. These transitioned to more diverse and dynamic spring communities in which pico- and nano-phytoeukaryotes, including many prasinophyte algae, dominated. Diatoms, which are often assumed to be the dominant phytoplankton in blooms, were contributors but not the major component of biomass. We show that diverse, small phytoplankton taxa are unexpectedly common in the western North Atlantic and that regional influences play a large role in modulating community transitions during the seasonal progression of blooms

    Concert recording 2016-04-19a

    Get PDF
    [Track 01]. Canzon duodecimi toni / Giovanni Gabrieli -- [Track 02]. Divertissement. Andante - allegro ; [Track 03]. Allegro vivace ; [Track 04]. Andante / Emile Bernard -- [Track 05]. March for military music in F major, Yorck march WoO 18 / Ludwig van Beethoven -- [Track 06]. Sept danses. Le jeu de la poupée ; [Track 07]. Funérailles de la poupée ; [Track 08]. La présentation des petits amis ; [Track 09]. Variation de Paul ; [Track 10]. Pas de deux entre Sophie et Paul ; [Track 11]. La goûter ; [Track 12]. Danse des filets à papillons / Jean Françaix

    Serum neurofilament dynamics predicts neurodegeneration and clinical progression in presymptomatic Alzheimer's disease

    Get PDF
    Neurofilament light chain (NfL) is a promising fluid biomarker of disease progression for various cerebral proteopathies. Here we leverage the unique characteristics of the Dominantly Inherited Alzheimer Network and ultrasensitive immunoassay technology to demonstrate that NfL levels in the cerebrospinal fluid (n = 187) and serum (n = 405) are correlated with one another and are elevated at the presymptomatic stages of familial Alzheimer's disease. Longitudinal, within-person analysis of serum NfL dynamics (n = 196) confirmed this elevation and further revealed that the rate of change of serum NfL could discriminate mutation carriers from non-mutation carriers almost a decade earlier than cross-sectional absolute NfL levels (that is, 16.2 versus 6.8 years before the estimated symptom onset). Serum NfL rate of change peaked in participants converting from the presymptomatic to the symptomatic stage and was associated with cortical thinning assessed by magnetic resonance imaging, but less so with amyloid-β deposition or glucose metabolism (assessed by positron emission tomography). Serum NfL was predictive for both the rate of cortical thinning and cognitive changes assessed by the Mini-Mental State Examination and Logical Memory test. Thus, NfL dynamics in serum predict disease progression and brain neurodegeneration at the early presymptomatic stages of familial Alzheimer's disease, which supports its potential utility as a clinically useful biomarker

    Synechococcus nitrogen gene loss in iron-limited ocean regions.

    Get PDF
    Synechococcus are the most abundant cyanobacteria in high latitude regions and are responsible for an estimated 17% of annual marine net primary productivity. Despite their biogeochemical importance, Synechococcus populations have been unevenly sampled across the ocean, with most studies focused on low-latitude strains. In particular, the near absence of Synechococcus genomes from high-latitude, High Nutrient Low Chlorophyll (HNLC) regions leaves a gap in our knowledge of picocyanobacterial adaptations to iron limitation and their influence on carbon, nitrogen, and iron cycles. We examined Synechococcus populations from the subarctic North Pacific, a well-characterized HNLC region, with quantitative metagenomics. Assembly with short and long reads produced two near complete Synechococcus metagenome-assembled genomes (MAGs). Quantitative metagenome-derived abundances of these populations matched well with flow cytometry counts, and the Synechococcus MAGs were estimated to comprise >99% of the Synechococcus at Station P. Whereas the Station P Synechococcus MAGs contained multiple genes for adaptation to iron limitation, both genomes lacked genes for uptake and assimilation of nitrate and nitrite, suggesting a dependence on ammonium, urea, and other forms of recycled nitrogen leading to reduced iron requirements. A global analysis of Synechococcus nitrate reductase abundance in the TARA Oceans dataset found nitrate assimilation genes are also lower in other HNLC regions. We propose that nitrate and nitrite assimilation gene loss in Synechococcus may represent an adaptation to severe iron limitation in high-latitude regions where ammonium availability is higher. Our findings have implications for models that quantify the contribution of cyanobacteria to primary production and subsequent carbon export
    corecore