11 research outputs found

    Aerobic Microbial Respiration In Oceanic Oxygen Minimum Zones

    Get PDF
    Oxygen minimum zones are major sites of fixed nitrogen loss in the ocean. Recent studies have highlighted the importance of anaerobic ammonium oxidation, anammox, in pelagic nitrogen removal. Sources of ammonium for the anammox reaction, however, remain controversial, as heterotrophic denitrification and alternative anaerobic pathways of organic matter remineralization cannot account for the ammonium requirements of reported anammox rates. Here, we explore the significance of microaerobic respiration as a source of ammonium during organic matter degradation in the oxygen-deficient waters off Namibia and Peru. Experiments with additions of double-labelled oxygen revealed high aerobic activity in the upper OMZs, likely controlled by surface organic matter export. Consistently observed oxygen consumption in samples retrieved throughout the lower OMZs hints at efficient exploitation of vertically and laterally advected, oxygenated waters in this zone by aerobic microorganisms. In accordance, metagenomic and metatranscriptomic analyses identified genes encoding for aerobic terminal oxidases and demonstrated their expression by diverse microbial communities, even in virtually anoxic waters. Our results suggest that microaerobic respiration is a major mode of organic matter remineralization and source of ammonium (~45-100%) in the upper oxygen minimum zones, and reconcile hitherto observed mismatches between ammonium producing and consuming processes therein

    Global perspectives on observing ocean boundary current systems

    Get PDF
    Ocean boundary current systems are key components of the climate system, are home to highly productive ecosystems, and have numerous societal impacts. Establishment of a global network of boundary current observing systems is a critical part of ongoing development of the Global Ocean Observing System. The characteristics of boundary current systems are reviewed, focusing on scientific and societal motivations for sustained observing. Techniques currently used to observe boundary current systems are reviewed, followed by a census of the current state of boundary current observing systems globally. The next steps in the development of boundary current observing systems are considered, leading to several specific recommendations.Fil: Todd, Robert E.. Woods Hole Oceanographic Institution; Estados UnidosFil: Chavez, Francisco. Monterey Bay Aquarium Research Institute; Estados UnidosFil: Clayton, Sophie. Old Dominion University; Estados UnidosFil: Cravatte, Sophie E.. Centre National de la Recherche Scientifique. Institut de Recherche pour le DĂ©veloppement; Francia. Universite de Toulouse; FranciaFil: Goes, Marlos P.. University of Miami; Estados UnidosFil: Graco, Michelle I.. Instituto del Mar del Peru; PerĂșFil: Lin, Xiaopei. Ocean University of China; ChinaFil: Sprintall, Janet. University of California; Estados UnidosFil: Zilberman, Nathalie V.. University of California; Estados UnidosFil: Archer, Matthew. California Institute of Technology; Estados UnidosFil: ArĂ­stegui, Javier. Universidad de Las Palmas de Gran Canaria; EspañaFil: Balmaseda, Magdalena A.. European Centre for Medium-Range Weather Forecasts; Reino UnidoFil: Bane, John M.. University of North Carolina; Estados UnidosFil: Baringer, Molly O.. Atlantic Oceanographic and Meteorological Laboratory ; Estados UnidosFil: Barth, John A.. State University of Oregon; Estados UnidosFil: Beal, Lisa M.. University of Miami; Estados UnidosFil: Brandt, Peter. Geomar-Helmholtz Centre for Ocean Research Kiel; AlemaniaFil: Calil, Paulo H.. Universidade Federal do Rio Grande; BrasilFil: Campos, Edmo. Universidade de Sao Paulo; BrasilFil: Centurioni, Luca R.. University of California; Estados UnidosFil: Chidichimo, MarĂ­a Paz. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; Argentina. Ministerio de Defensa. Armada Argentina. Servicio de HidrografĂ­a Naval; ArgentinaFil: Cirano, Mauro. Universidade Federal do Rio de Janeiro; BrasilFil: Cronin, Meghan F.. National Oceanic and Atmospheric Administration. Pacific Marine Environmental Laboratory; Estados UnidosFil: Curchitser, Enrique N.. Rutgers University; Estados UnidosFil: Davis, Russ E.. University of California; Estados UnidosFil: Dengler, Marcus. Geomar-Helmholtz Centre for Ocean Research Kiel; AlemaniaFil: DeYoung, Brad. Memorial University of Newfoundland; CanadĂĄFil: Dong, Shenfu. University of Miami; Estados UnidosFil: Escribano, Ruben. Universidad de ConcepciĂłn; ChileFil: Fassbender, Andrea J.. Monterey Bay Aquarium Research Institute; Estados Unido

    Global perspectives on observing ocean boundary current systems

    Get PDF
    © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Todd, R. E., Chavez, F. P., Clayton, S., Cravatte, S., Goes, M., Greco, M., Ling, X., Sprintall, J., Zilberman, N., V., Archer, M., Aristegui, J., Balmaseda, M., Bane, J. M., Baringer, M. O., Barth, J. A., Beal, L. M., Brandt, P., Calil, P. H. R., Campos, E., Centurioni, L. R., Chidichimo, M. P., Cirano, M., Cronin, M. F., Curchitser, E. N., Davis, R. E., Dengler, M., deYoung, B., Dong, S., Escribano, R., Fassbender, A. J., Fawcett, S. E., Feng, M., Goni, G. J., Gray, A. R., Gutierrez, D., Hebert, D., Hummels, R., Ito, S., Krug, M., Lacan, F., Laurindo, L., Lazar, A., Lee, C. M., Lengaigne, M., Levine, N. M., Middleton, J., Montes, I., Muglia, M., Nagai, T., Palevsky, H., I., Palter, J. B., Phillips, H. E., Piola, A., Plueddemann, A. J., Qiu, B., Rodrigues, R. R., Roughan, M., Rudnick, D. L., Rykaczewski, R. R., Saraceno, M., Seim, H., Sen Gupta, A., Shannon, L., Sloyan, B. M., Sutton, A. J., Thompson, L., van der Plas, A. K., Volkov, D., Wilkin, J., Zhang, D., & Zhang, L. Global perspectives on observing ocean boundary current systems. Frontiers in Marine Science, 6, (2010); 423, doi: 10.3389/fmars.2019.00423.Ocean boundary current systems are key components of the climate system, are home to highly productive ecosystems, and have numerous societal impacts. Establishment of a global network of boundary current observing systems is a critical part of ongoing development of the Global Ocean Observing System. The characteristics of boundary current systems are reviewed, focusing on scientific and societal motivations for sustained observing. Techniques currently used to observe boundary current systems are reviewed, followed by a census of the current state of boundary current observing systems globally. The next steps in the development of boundary current observing systems are considered, leading to several specific recommendations.RT was supported by The Andrew W. Mellon Foundation Endowed Fund for Innovative Research at WHOI. FC was supported by the David and Lucile Packard Foundation. MGo was funded by NSF and NOAA/AOML. XL was funded by China’s National Key Research and Development Projects (2016YFA0601803), the National Natural Science Foundation of China (41490641, 41521091, and U1606402), and the Qingdao National Laboratory for Marine Science and Technology (2017ASKJ01). JS was supported by NOAA’s Global Ocean Monitoring and Observing Program (Award NA15OAR4320071). DZ was partially funded by the Joint Institute for the Study of the Atmosphere and Ocean (JISAO) under NOAA Cooperative Agreement NA15OAR4320063. BS was supported by IMOS and CSIRO’s Decadal Climate Forecasting Project. We gratefully acknowledge the wide range of funding sources from many nations that have enabled the observations and analyses reviewed here

    Nutrientes, oxĂ­geno y procesos biogeoquĂ­micos en el sistema de surgencias de la corriente de Humboldt frente a PerĂș

    Get PDF
    The upwelling system of the Humboldt Current, is considered among the most productive systems in the world, extending along the eastern South Pacific off Chile and Peru. In particular the coastal waters off Peru attracted considerable interest for being among the most fertile and productive the world, highlighting fisheries, such as anchovy, which represent one of the pillars of the economy of Peru.El Sistema de surgencias de la corriente de Humboldt, es considerado entre los sistemas mĂĄs productivos del mundo, extendiĂ©ndose a lo largo del pacĂ­fico sur oriental frente a Chile y PerĂș. En particular las aguas costeras frente a PerĂș atraen un considerable interĂ©s por encontrarse entre las mĂĄs fĂ©rtiles y productivas del mundo, destacĂĄndose pesquerĂ­as, como la de anchoveta, que representan uno de los pilares de la economĂ­a del PerĂș

    Nutrients, oxygen and biogeochemical processes in the Humboldt upwelling current system off Peru

    No full text
    The upwelling system of the Humboldt Current, is considered among the most productive systems in the world, extending along the eastern South Pacific off Chile and Peru. In particular the coastal waters off Peru attracted considerable interest for being among the most fertile and productive the world, highlighting fisheries, such as anchovy, which represent one of the pillars of the economy of Peru

    Abundance of genes and transcripts encoding for terminal respiratory oxidases in the ETSP OMZ.

    No full text
    <p>(a, b) Abundance of low-affinity (cytochrome c oxidase) and high-affinity (cytochrome bd and cbb<sub>3</sub> oxidase) aerobic oxidases in the Peruvian OMZ (station 3). (c-f) Abundance and expression of cytochrome oxidase genes in the OMZ off Chile during cruise MOOMZ-1 [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0133526#pone.0133526.ref034" target="_blank">34</a>]. Taxonomic affiliations of cytochrome oxidases are shown on domain, phylum or class level if represented by at least 5% of oxidase-coding sequences. Exact abundance and expression levels as well as taxonomic assignments of the individual types of cytochrome oxidases are given in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0133526#pone.0133526.s006" target="_blank">S3 Table</a>.</p

    Physicochemical zonation and rates of microbial respiration in the OMZs off Namibia and Peru.

    No full text
    <p>(a-c) Namibian shelf (station 252, 111m). (d-f) Peruvian coastal OMZ (station 807, 115 m). (g-i) Offshore Peruvian OMZ (station 3, 4697 m). Dashed lines indicate the upper OMZ boundary (O<sub>2</sub> ≀15 ÎŒmol l<sup>-1</sup>). Previously determined rates of aerobic and anaerobic NH<sub>4</sub><sup>+</sup> oxidation [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0133526#pone.0133526.ref014" target="_blank">14</a>,<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0133526#pone.0133526.ref024" target="_blank">24</a>,<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0133526#pone.0133526.ref025" target="_blank">25</a>] are tenfold magnified. Please note the differences in scale between stations. *Chlorophyll <i>a</i> concentrations in panel b in relative units.</p
    corecore