53 research outputs found

    Adipogenesis is Under Surveillance of Hsp90 and the High Molecular Weight Immunophilin FKBP51

    Get PDF
    Adipose tissue plays a central role in the control of energy balance as well as in the maintenance of metabolic homeostasis. It was not until recently that the first evidences of the role of heat shock protein (Hsp) 90 and high molecular weight immunophilin FKBP51 have been described in the process of adipocyte differentiation. Recent reports describe their role in the regulation of PPARγ, a key transcription factor in the control of adipogenesis and the maintenance of the adipocyte phenotype. In addition, novel roles have been uncovered for FKBP51 in the organization of the architecture of the nucleus through its participation in the reorganization of the nuclear lamina. Therefore, the aim of this review is to integrate and discuss the recent advances in the field, with special emphasis on the roles of Hsp90 and FKBP51 in the process of adipocyte differentiation.Fil: Toneatto, Judith. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Charó, Nancy Lorena. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Galigniana, Natalia Maricel. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Piwien Pilipuk, Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; Argentin

    The dynamic mitochondria-nuclear redistribution of FKBP51 during the process of adipocyte differentiation is regulated by PKA

    Get PDF
    Los glucocorticoides tienen un papel central en la adipogénesis, por su unión al receptor RG cito-plasmático formando parte de un heterocomplejo también integrado por una inmunofilina (INM) de alto peso molecular, FKBP51 o FKBP52. Durante la diferenciación adipocítica los niveles de Hsp90, Hsp70 y p23 no se modifican, mientras la expresión de FKBP52 disminuye y la de FKBP51 aumenta progresivamente. FKBP51 sufre una dinámica redistribución mitocondria-núcleo al inicio del proceso de adipogénesis, concentrándose en la lámina nuclear coincidiendo temporalmente con su reorganización. A las 48 h la INM se concentra nuevamente en las mitocondrias. Esta dinámica redistribución mitocondria-núcleo es regulada por glucocorticoides principalmente, por la vía AMPc-PKA ya que la inhibición de PKA por PKI-miristoilado bloquea la traslocación de FKBP51 a núcleo inducida por 3-isobutil-1-metilxantina (IBMX). PKA-c se asocia con RG de manera ligando-dependiente potenciando su actividad transcripcional y ésta disminuye con IBMX, forskolina o dibutiril-AMPc que inducen la traslocación a núcleo de FKBP51 y, por lo tanto, PKA podría ejercer un papel dual en la regulación de dicho factor. En síntesis, la presencia de FKBP51 en el núcleo dependiente de la activación de PKA puede ser crítica para el control de RG y posiblemente para otros factores no pertenecientes a la familia de los receptores nucleares cuya función es regulada también por dicha vía de señalización, evento que tiene lugar en una etapa del proceso de diferenciación con alto nivel de remodelamiento de cromatina, pero donde la transcripción debe estar estrictamente controlada para la adquisición del fenotipo adipocítico.The dynamic mitochondria-nuclear redistribution of FKBP51 during the process of adipo- cyte differentiation is regulated by PKA. Glucocorticoids play an important role in adipogenesis via the glucocorticoid receptor (GR) that forms a heterocomplex with Hsp90-Hsp70 and a high molecular weight im- munophilin FKBP51 or FKBP52. We have found that FKBP51 level of expression progressively increases, FKBP52 decreases, whereas Hsp90, Hsp70, and p23 remain unchanged when 3T3-L1 preadipocytes differentiate. Interest- ingly, FKBP51 translocates from mitochondria to the nucleus at the onset of adipogenesis. FKBP51 transiently concentrates in the nuclear lamina, at a time that this nuclear compartment undergoes its reorganization. FKBP51 nuclear localization is transient, after 48 h it cycles back to mitochondria. We found that the dynamic FKBP51 mitochondrial-nuclear shuttling is regulated by glucocorticoids and mainly on cAMP-PKA signaling since PKA inhibition by myristoilated-PKI, abrogated FKBP51 nuclear translocation induced by 3-isobutyl-1-methylxanthine (IBMX). It has been reported that PKA interacts with GR in a ligand dependent manner potentiating its transcrip- tional capacity. GR transcriptional capacity is reduced when cells are incubated in the presence of IBMX, forskolin or dibutyryl-cAMP, compounds that induced nuclear translocation of FKBP51, therefore PKA may exert a dual role in the control of GR. In summary, the presence of FKBP51 in the nucleus may be critical for GR transcriptional control, and possibly for the control of other transcription factors that are not members of the nuclear receptor family but are regulated by PKA signaling pathway, when transcription has to be strictly controlled to succeed in the acquisition of the adipocyte phenotype.Fil: Toneatto, Judith. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Charó, Nancy Lorena. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Susperreguy, Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Piwien Pilipuk, Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; Argentin

    Organization of nuclear architecture during adipocyte differentiation

    Get PDF
    Obesity is a serious health problem worldwide since it is a major risk factor for chronic diseases such as type II diabetes. Obesity is the result of hyperplasia (associated with increased adipogenesis) and hypertrophy (associated with decreased adipogenesis) of the adipose tissue. Therefore, understanding the molecular mechanisms underlying the process of adipocyte differentiation is relevant to delineate new therapeutic strategies for treatment of obesity. As in all differentiation processes, temporal patterns of transcription are exquisitely controlled, allowing the acquisition and maintenance of the adipocyte phenotype. The genome is spatially organized; therefore decoding local features of the chromatin language alone does not suffice to understand how cell type-specific gene expression patterns are generated. Elucidating how nuclear architecture is built during the process of adipogenesis is thus an indispensable step to gain insight in how gene expression is regulated to achieve the adipocyte phenotype. Here we will summarize the recent advances in our understanding of the organization of nuclear architecture as progenitor cells differentiate in adipocytes, and the questions that still remained to be answered.Fil: Charó, Nancy Lorena. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Rodríguez Ceschan, María I.. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Galigniana, Natalia Maricel. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Toneatto, Judith. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Piwien Pilipuk, Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; Argentin

    Dynamic mitochondrial–nuclear redistribution of the immunophilin FKBP51 is regulated by the PKA signaling pathway to control gene expression during adipocyte differentiation

    Get PDF
    Glucocorticoids play an important role in adipogenesis via the glucocorticoid receptor (GR) that forms a heterocomplex with Hsp90•Hsp70 and one high molecular weight immunophilin FKBP51 or FKBP52. When 3T3-L1 preadipocytes are induced to differentiate, FKBP51 expression progressively increases, whereas FKBP52 decreases, and Hsp90, Hsp70, p23 and Cyp40 remain unchanged. Interestingly, FKBP51 rapidly translocates from mitochondria to the nucleus where it is retained upon its interaction with chromatin and the nuclear matrix. FKBP51 nuclear localization is transient, after 48 h it cycles back to mitochondria. Importantly, this dynamic FKBP51 mitochondrial-nuclear shuttling depends on PKA signaling, since its inhibition by PKI or knock-down of PKA-cα by siRNA, abrogated FKBP51 nuclear translocation induced by IBMX. In addition, FKBP51 electrophoretic pattern of migration is altered by treatment of cells with PKI or knock-down of PKA-cα suggesting that FKBP51 is a PKA substrate. In preadipocytes, FKBP51 co-localizes with PKA-cα in mitochondria. When adipogenesis is triggered, PKA-cα also moves to the nucleus co-localizing with FKBP51 mainly in the nuclear lamina. Moreover, FKBP51 and GR interaction increases when preadipocytes are induced to differentiate. GR transcriptional capacity is reduced when cells are incubated in the presence of IBMX, forskolin or dibutiryl-cAMP, compounds that induced FKBP51 nuclear translocation, but not by an specific activator of EPAC. FKBP51 knock-down facilitates while ectopic expression of FKBP51 blocks adipogenesis. These findings indicate that the dynamic mitochondrial-nuclear shuttling of FKBP51 regulated by PKA may be key in fine tuning the transcriptional control of GR-target genes required for the acquisition of adipocyte phenotype.Fil: Toneatto, Judith. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental (i); ArgentinaFil: Guber, Sergio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquimicas de Buenos Aires; ArgentinaFil: Charó, Nancy Lorena. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental (i); ArgentinaFil: Susperreguy, Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental (i); ArgentinaFil: Schwartz, Jessica. University Of Michigan; Estados UnidosFil: Galigniana, Mario Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental (i); Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; ArgentinaFil: Piwien Pilipuk, Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental (i); Argentin

    Multiple mechanisms of growth hormone-regulated gene transcription

    Get PDF
    Diverse physiological actions of growth hormone (GH) are mediated by changes in gene transcription. Transcription can be regulated at several levels, including post-translational modification of transcription factors, and formation of multiprotein complexes involving transcription factors, co-regulators and additional nuclear proteins; these serve as targets for regulation by hormones and signaling pathways. Evidence that GH regulates transcription at multiple levels is exemplified by analysis of the proto-oncogene c-fos. Among the GH-regulated transcription factors on c-fos, C/EBPbeta appears to be key, since depletion of C/EBPbeta by RNA interference blocks the stimulation of c-fos by GH. The phosphorylation state of C/EBPbeta and its ability to activate transcription are regulated by GH through MAPK and PI3K/Akt-mediated signaling cascades. The acetylation of C/EBPbeta also contributes to its ability to activate c-fos transcription. These and other post-translational modifications of C/EBPbeta appear to be integrated for regulation of transcription by GH. The formation of nuclear proteins into complexes associated with DNA-bound transcription factors is also regulated by GH. Both C/EBPbeta and the co-activator p300 are recruited to c-fos in response to GH, altering c-fos promoter activation. In addition, GH rapidly induces spatio-temporal re-localization of C/EBPbeta within the nucleus. Thus, GH-regulated gene transcription mediated by C/EBPbeta reflects the integration of diverse mechanisms including post-translational modifications, modulation of protein complexes associated with DNA and re-localization of gene regulatory proteins. Similar integration involving other transcription factors, including Stats, appears to be a feature of regulation by GH of other gene targets.Fil: Ceseña, Teresa I.. University of Michigan; Estados UnidosFil: Cui, Tracy Xiao. University of Michigan; Estados UnidosFil: Piwien Pilipuk, Graciela. Fundación Instituto Leloir; ArgentinaFil: Kaplani, Julianne. University of Michigan; Estados UnidosFil: Calinescu, Anda Alexandra. Michigan State University; Estados UnidosFil: Huo, Jeffrey S.. University of Michigan; Estados UnidosFil: Iñiguez Lluhí, Jorge A.. University of Michigan; Estados UnidosFil: Kwok, Roland. University of Michigan; Estados UnidosFil: Schwartz, Jessica. University of Michigan; Estados Unido

    Management of cytoskeleton architecture by molecular chaperones and immunophilins

    Get PDF
    Cytoskeletal structure is continually remodeled to accommodate normal cell growth and to respond to pathophysiological cues. As a consequence, several cytoskeleton-interacting proteins become involved in a variety of cellular processes such as cell growth and division, cell movement, vesicle transportation, cellular organelle location and function, localization and distribution of membrane receptors, and cell-cell communication. Molecular chaperones and immunophilins are counted among the most important proteins that interact closely with the cytoskeleton network, in particular with microtubules and microtubule-associated factors. In several situations, heat-shock proteins and immunophilins work together as a functionally active heterocomplex, although both types of proteins also show independent actions. In circumstances where homeostasis is affected by environmental stresses or due to genetic alterations, chaperone proteins help to stabilize the system. Molecular chaperones facilitate the assembly, disassembly and/or folding/refolding of cytoskeletal proteins, so they prevent aberrant protein aggregation. Nonetheless, the roles of heat-shock proteins and immunophilins are not only limited to solve abnormal situations, but they also have an active participation during the normal differentiation process of the cell and are key factors for many structural and functional rearrangements during this course of action. Cytoskeleton modifications leading to altered localization of nuclear factors may result in loss- or gain-of-function of such factors, which affects the cell cycle and cell development. Therefore, cytoskeletal components are attractive therapeutic targets, particularly microtubules, to prevent pathological situations such as rapidly dividing tumor cells or to favor the process of cell differentiation in other cases. In this review we will address some classical and novel aspects of key regulatory functions of heat-shock proteins and immunophilins as housekeeping factors of the cytoskeletal network.Fil: Quintá, Héctor Ramiro. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental (i); ArgentinaFil: Galigniana, Natalia Maricel. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental (i); ArgentinaFil: Erlejman, Alejandra Giselle. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; ArgentinaFil: Lagadari, Mariana. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental (i); ArgentinaFil: Piwien Pilipuk, Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental (i); ArgentinaFil: Galigniana, Mario Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental (i); Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; Argentin

    Subcellular movement of signaling molecules: how and why?

    No full text
    The biological function of proteins is determined by their cellular localization and subsequent interactions with other factors within a given subcellular compartment. Therefore, it is critical to understand how proteins move to and from the sites where they exert biological effects and how this mechanism of movement is regulated. This concept becomes particularly interesting when soluble signalling factors such as STATs, p53, NFkB, MAPKs, C/EBPs, steroid receptors or cyclins are involved. Soluble proteins are not confined to the cytoplasm or the nucleus in a static manner, but they shuttle dynamically between subcellular compartments regardless of where they are primarily localized under certain biological conditions. Consistent with this concept ─and not surprisingly─protein mistargeting leads to a number of pathologies. Ideally, most of these pathologies could be attenuated or even prevented if we were able to regulate the subcellular localization of those mistargeted proteins; i.e. by interfering with the molecular machinery for protein movement and/or by regulating the function of anchoring factors of a given compartment. Nowadays, we know no more than the basics about regulatory mechanisms for protein anchoring, so we still have more questions and doubts than answers and certainties. On the other hand, the molecular mechanism by which soluble proteins move in the cell is an unsolved biological conundrum. In this regard, movement has always been assumed to occur in a stochastic manner by simple diffusion. This oversimplified model has been accepted as the driving mechanism for protein movement in both the cytoplasm and the nucleus. Although heuristic, this notion contradicts the concept of efficiency for protein targeting and, even more importantly, it collides against the concepts of cellular compartmentalization and specificity of action of signalling proteins. In this chapter we describe a novel model in which the cytoplasmic movement of some members of the nuclear receptor superfamily is regulated by their association with high molecular weight immunophilins. Based on their subnuclear distribution in different conditions, we also reformulate some classical concepts about the functional regulation of archetype hormone-regulated transcription factors such as steroid receptors and C/EBPs, and postulate the existence of a non-random mechanism for intranuclear trafficking of proteins.Fil: Piwien Pilipuk, Graciela. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Galigniana, Mario Daniel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fundación Instituto Leloir; Argentin

    Activation of the ligand-mineralocorticoid receptor functional unit by ancient, classical, and novel ligands: structure-activity relationship

    Get PDF
    The mineralocorticoid effect on epithelial cells is the resultant of an intricate net of biochemical regulations that ultimately leads to the maintenance of electrolyte homeostasis. Two key protagonists in this plot are the ligand, which broadcasts the information, and the receptor, which functions as a receiver and transducer. Therefore, the responsibility for the final biological effect is not limited to each individual component but to both of them, so they constitute a functional unit. In addition, several prereceptor regulatory mechanisms are also determinant factors for the final biological response. Because steroids are present in both animals and plants and are derived from common precursors, it is intriguing how these simple molecules have acquired specialization to shape biological development and differentiation. This is particularly true for the function of aldosterone in mammals, which is mimicked by glucocorticoids or progesterone in some particular cases. Inasmuch as the most potent mineralocorticoid in nature, aldosterone, shows a poorly angled steroid nucleus at the A?B-ring junction, and because steroids that possess identical functional groups and different steroidal frames elicit different mineralocorticoid effects, we postulate that a planar conformation of the ligand is a key requirement to acquire potent sodium retention properties. The model takes into consideration all the mechanisms involved in the regulation of the final biological effect, although it does not provide a definitive answer to the original question. It is also discussed how the use of novel mineralocorticoid ligands may shed light on the still obscure mechanism of action of the mineralocorticoid receptor.Fil: Galigniana, Mario Daniel. University of Michigan; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Piwien Pilipuk, Graciela. University of Michigan; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin
    corecore