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ABSTRACT
Obesity is a serious health problem worldwide since it is a major risk factor for chronic diseases such
as type II diabetes. Obesity is the result of hyperplasia (associated with increased adipogenesis)
and hypertrophy (associated with decreased adipogenesis) of the adipose tissue. Therefore,
understanding the molecular mechanisms underlying the process of adipocyte differentiation is
relevant to delineate new therapeutic strategies for treatment of obesity. As in all differentiation
processes, temporal patterns of transcription are exquisitely controlled, allowing the acquisition and
maintenance of the adipocyte phenotype. The genome is spatially organized; therefore decoding
local features of the chromatin language alone does not suffice to understand how cell type-specific
gene expression patterns are generated. Elucidating how nuclear architecture is built during the
process of adipogenesis is thus an indispensable step to gain insight in how gene expression is
regulated to achieve the adipocyte phenotype. Here we will summarize the recent advances in our
understanding of the organization of nuclear architecture as progenitor cells differentiate in
adipocytes, and the questions that still remained to be answered.
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The pandemic of obesity has led scientists to focus
their attention on the study of adipose tissue and the
development of fat cells. During the last 2 decades it
has been demonstrated that adipocytes release a vari-
ety of factors, including cytokines, chemokines, and
many other biologically active molecules, generically
called adipokines, that have led adipose tissue to be
regarded as an active endocrine organ. Adipokines sig-
nal to organs of metabolic importance including brain,
liver, skeletal muscle, and the immune system.1,2 In
this way, the adipose tissue plays a central role in
modulating the homeostasis of lipid and glucose
metabolism, blood pressure, and inflammation. In
obese individuals, the secretion of adipokines is
deregulated3 and adipose tissue is infiltrated by a
higher number of macrophages compared to normal
tissue.4,5 These events lead to a state of chronic inflam-
mation and metabolic syndrome.6,7 Conversely, lipo-
dystrophy, a disorder characterized by selective total
or partial loss of body fat, is also accompanied by met-
abolic consequences similar to those observed in obe-
sity, including insulin resistance, dyslipidemia, hepatic
and myocellular steatosis and increased risk of

diabetes and atherosclerosis,8 reinforcing the notion
that adipose tissue plays a key role in the control of
the homeostasis of whole-body metabolism.

In mammals, adipocytes have been classified into 2
distinct types: white, and brown adipose cells. White
adipocytes express cell type-selective machinery for
triglyceride synthesis from lipoprotein-derived fatty
acids, as well as for hormone-stimulated glucose
uptake and lipolysis. In addition, they produce adipo-
kines such as leptin, resistin, adiponectin, and TNFa
that modulate systemic metabolism, a function
shared with brown fat cells.9,10 The development of
methods for separating white adipose tissue (WAT)
into adipocyte and stromal-vascular fractions
(SVF),11 led to the discovery that SVF is the source
of adipocyte precursor cells.12 However, the charac-
terization of this cell population remained elusive for
several decades and much effort has been done to
uncover it. Sengenes et al showed by FACS analysis
performed on crude SVF cultured under adipogenic
conditions, that the progressive accumulation of lipid
droplets was associated with a selective enrichment
of the CD34C/CD31- cell population.13 Rodeheffer
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et al. identified a subpopulation of early adipocyte
progenitor cells resident in the WAT vascular stroma
as Lin¡:CD29C:CD34C: Sca-1C:CD24C that consti-
tutes in total approximately 0.08% of the cells in the
SVF.14 Using genetically tagged mice, Tang et al.
demonstrated that most adipocytes derive from a
pool of proliferating and renewing adipogenic pro-
genitors that are already committed either prenatally
or early in postnatal life.15 These progenitors reside
in the mural cell compartment of the adipose vascu-
lature, but not in the vasculature of other tissues,15

an observation supported by early studies using elec-
tron microscopy.16,17 The local microenvironment is
a crucial determinant of progenitor fate, function,
and maintenance.18 Thus, the adipose vasculature
appears to function as a progenitor niche, possibly
providing signals for adipocyte development.

In contrast to WAT, the main role of BAT is to
metabolize fatty acids to maintain body temperature, by
dissipating chemical energy in the form of heat. This
function depends on its high mitochondrial content and
the ability to uncouple cellular respiration through the
action of uncoupling protein-1 (UCP-1).6,10,19 There is
evidence that brown adipocytes originate from a cell
lineage distinct from that of white adipose cells.20-23

Microarray analysis of primary brown adipocytes
showed the expression of a myogenic transcriptional sig-
nature.20 Further, myogenic factor 5 (Myf5), previously
thought to be expressed only in skeletal muscle precur-
sors, is also expressed in BAT committed precursors.22

Myf5 positive myoblast-like cells differentiate into
brown adipocytes through the action of the transcrip-
tional regulators PRMD16 and C/EBPb.21,22,24 BAT was
considered insignificant in adult humans; however
recent studies have shown that brown adipocytes are
dispersed throughout adult adipose tissue.25-27 The
amount of BAT is inversely correlated with body-mass
index, especially in older people. BAT depots respond to
changes in temperature, but this response is significantly
lower in the overweight or obese than in lean subjects
suggesting a potential role of BAT in adult human
metabolism.28-30 Mitochondrial function, which is key
in non-shivering thermogenesis in brown adipose cells,
is also diminished in white adipocytes at the onset of
obesity,31 exemplifying a negative relationship between
obesity and mitochondrial biogenesis that potentially
contributes to the development of diabetes.32,33 There-
fore, the balance between BAT and WAT affects energy
balance, and any factor that may alter the equilibrium

between them may possibly facilitate the development
of obesity and loss of metabolic homeostasis.

However, adipose tissue is even more complex
than previously thought. It was recently shown that
in addition to classical white and brown adipocytes,
there is at least a third cell type: beige or brite
(brown-in-white) cells.34-37 They are present in
patches dispersed in WAT, and do not derive from
the same lineage as the classical brown fat cells. The
existence of a progenitor cell that differentiates into
beige cells is still controversial. It has been shown
that chronic treatment of precursors of WAT with
PPARg ligands leads to the generation of beige cells
that express PGC-1a and respond to norepinephrine
by increasing UCP-1 gene expression.35 This effect of
PPAR agonists is possibly due to an increase in the
half-life of the PRDM16 protein.38 However, beige
adipose cells are devoid of expression of myocyte-
associated genes and transcription factors present in
classical brown adipocytes.35 It has also been pro-
posed that browning of WAT upon exposure of mice
to cold is a consequence of transdifferentiation of
white into beige adipocytes, since neither adipocyte
number nor DNA content increases in white fat
depots.36 It was proposed that BAT and inducible
beige fat cells participate in non-shivering thermo-
genesis, an event crucial for mammals as a defense
against cold and obesity, under the control of the
sympathetic nervous system and b-adrenergic signal-
ing. Interestingly, it has been recently reported that
white and beige fat cells have the ability to respond
to low temperatures by activating a thermogenic gene
program in a cell-autonomous manner.39 This activa-
tion in isolated cells is independent of the cAMP/
PKA/CREB pathway downstream of the b-adrenergic
receptors.39 Bone morphogenic proteins (BMPs) reg-
ulate both the formation and the thermogenic activity
of BAT.40,41 Disruption of BMPs signaling in BAT
causes a severe paucity of BAT and a compensatory
sympathetic response in WAT by increasing the
number of beige cells.42 This compensatory mecha-
nism is sufficient to maintain the homeostasis of
body temperature and to generate resistance to diet-
induced obesity.42 Importantly, adipose cells with the
molecular signature of beige cells are also present in
fat depots in humans.43,44 Thus beige cells may repre-
sent a potential target for therapeutic intervention for
the treatment of obesity and metabolic syndrome.
Unequivocally, adipose tissue is very complex and
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heterogeneous; therefore its deregulation can deeply
affect whole-body metabolic homeostasis.

Adipose tissue is not static and approximately 10%
of our body’s fat cells are regenerated each year.45 In
order to support adipose dynamics in the adult, prolif-
erative adipocyte precursor cells must exist and be
poised to respond to metabolic demands. During adi-
pogenesis, as in any differentiation process, temporal
patterns of transcription are exquisitely controlled
upon activation of different signaling pathways that
lead to the binding of transcription factors to target
genes as well as factors that coordinately modify the
chromatin landscape as adipogenesis proceeds, allow-
ing the acquisition and maintenance of the adipocyte
phenotype.10,46,47 All cells of an individual possess the
same genomic information; yet we do not know how
the precise pattern of gene expression is established
and maintained in order to delineate the final pheno-
type of a cell. During the last decades a great deal of
effort has been focused on deciphering the histone
code to elucidate how the architecture of nuclear chro-
matin is organized.48,49 Covalent histone modifica-
tions and their interplay with DNA methylation sites,
as well as histone variants and chromatin remodeling
events, have emerged as major players, yielding dis-
tinct modifications of chromatin which allow or
prevent transcription.48,50 Control of epigenetic signa-
tures is not only involved in a cell differentiation pro-
cess such as adipogenesis,51 but also in re- or de-
programming during development.52,53 The in vitro
reprogramming of somatic cells to pluripotent stem
cells (SC) is also accompanied by genome-wide
remodeling of chromatin modifications from a
somatic to an SC-like state,54 although the temporal
sequence of these changes remains elusive. Neverthe-
less, understanding transcriptional regulation and
decoding the epigenetic code also are not enough to
understand how cell type-specific gene expression pat-
terns are generated throughout development or during
any process of cell differentiation in an adult organ-
ism. In this regard, knowledge of the architecture of
nuclear compartments is also critical to understand
how gene expression as well as other nuclear func-
tions, such as chromatin replication and DNA repair
are regulated.55

One of the current pressing questions is how gene
expression is integrated into the architectural frame-
work of the cell nucleus, delineating the goal of “epige-
nomics”: the functional integration of epigenetics and

nuclear architecture.55 In the path toward epigenom-
ics, we must become familiar with the complex and
dynamic architecture of the nucleus in interphase.
The nucleus is highly compartmentalized, but in con-
trast to compartments in the cytoplasm, nuclear com-
partments are not limited by membranes. This
characteristic favors their highly dynamic assembly-
disassembly status, dependent on the cell cycle phase
and the transcriptional state of the cell. In the inter-
phase nucleus, the nuclear compartments include the
nuclear lamina, the still controversial nucleoskeleton
or nuclear matrix, the chromosome territories and
nuclear bodies (Fig. 1A). Much effort is being directed
toward understanding how gene expression is inte-
grated into the landscape of nuclear architecture. Here
we review the first steps taken to dissect the complex
organization of the nucleus during the process of
adipocyte differentiation.

Nuclear lamina and its importance in the
adipocyte

The nuclear lamina (NL) is a filamentous protein
mesh-work that lines the nucleoplasmic surface of the
nuclear envelope (NE) interacting with inner nuclear
membrane proteins and nuclear pores (Fig. 1A),56,57

reviewed in.58 The NL consists of a polymeric assem-
bly of nuclear lamins, the A-type (LA and LC) and the
B-type lamins (LB1 and LB2), respectively.59 LA and
LC are derived from a single gene (LMNA) by alterna-
tive splicing and are expressed only in differentiated
cells. On the other hand, LB1 and LB2 are encoded by
LMNB1 and LMNB2, respectively, and at least one of
them is expressed in all cells throughout develop-
ment.60 The lamins bind to other NE proteins, includ-
ing some belonging to the nuclear pore complex
(NPC) and the inner nuclear membrane, interactions
that are functionally important in regulating the
proper assembly of the NE.61 Although the major frac-
tion of lamins is found in the NL, they are also located
throughout the nucleoplasm.62,63 The NL is thought
to provide a structural framework for the NE, contrib-
uting to the size, shape and mechanical stability of the
nucleus. However, lamins participate not only in the
architectural organization of the nucleus, but also in
its cellular integrity, possibly through the Linker of
Nucleus and Cytoskeleton (LINC) complex.64 LINC
is formed by lamins that interact with the inner
nuclear membrane-bound SUN proteins, which in
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turn associate with the nuclear-cytoskeleton linker
proteins in the outer nuclear membrane, i.e. nesprins.
Nesprin-1 and¡2 contain a binding domain for direct
interaction with actin, and nesprin-3 for plectrin, an
intermediate filament binding protein. The NL
through LINC constitute an interconnected network
that is involved in the control of nuclear positioning,
mechano-signal transduction, mitosis as well as in the
organization of the cytoskeleton.65 In addition, the NL
also participates in DNA replication and repair, RNA
polymerase II transcription, and the epigenetic control

of chromatin remodeling.63 The NL provides anchor-
ing sites for interphase chromosomes at the nuclear
periphery. In this regard, a high resolution map of the
interaction sites of the entire genome with the NL
components in human fibroblasts shows that genome-
lamina interactions occur through more than 1,300
sharply defined large domains 0.1-10 megabases in
size, known as lamin associated domains (LADs).66

These LADs are characterized by low gene-expression
levels, indicating that they represent a repressive chro-
matin environment.66 Using 3-dimensional DNA-

Figure 1. Nuclear architecture during adipogenesis. (A) Schematic representation of the compartments of the nucleus in interphase: NE:
nuclear envelope, NPC: nuclear pore complex, NL: nuclear lamina, NM: nuclear matrix, CTs: chromosome territories, LADs: lamin attach-
ment domains, MARs: Matrix attachment regions; TADs: topologically associating domains. (B) Reorganization of the NL during adipo-
cyte differentiation. 3T3L1 preadipocytes grown on coverslips were induced to differentiate for 24h. Indirect immunofluorescence and
confocal microscopy imaging shows lamin B (red), FKBP51 (green) and chromatin stained with DAPI (blue), as described.98 Observe the
discontinuous staining of lamin B (arrow heads) due to the reorganization of the NL. (C) Summary of the events of nuclear reorganiza-
tion that were described during adipogenesis. Images depict 3T3-L1 preadipocytes and adipocytes, the latter with lipid vesicles stained
with Oil Red O, as described.98
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immunoFISH, it was demonstrated that repositioning
of chromosomal regions to the nuclear lamina is
dependent on breakdown and reformation of the NE
during mitosis.67

The NL was long considered to be a nuclear
domain that was not permissive for transcription,
since genes positioned at the NL and even tethered to
it were silenced.67,68 However, more recent studies
have shown that some transcriptionally active genes
are associated with the NL via nucleoporins at the
nucleoplasmic face of the NPCs and/or are relocated
upon transcriptional activation to nuclear pores.69-72

H3K27Me3, which marks repressed gene promoters,
is enriched at the nuclear periphery in embryonic
stem cells (ESC).73 In contrast, H3K27Me3 was less
concentrated at the nuclear periphery of differentiated
cells, demonstrating that the nuclear periphery is an
epigenetically dynamic compartment that might pos-
sess distinct epigenetic marks in pluripotent ESCs
compared to differentiated cells.73 Furthermore, it was
recently shown that FKBP52, a component of the
Hsp90�Hsp70�p23 heterocomplex bound to steroid
receptors,74 concentrates in a perinuclear structure
associated with Hsp90 and p23 in undifferentiated
murine neuroblastoma cells (N2a) and embryonic
hippocampal neurons.75 Upon cell differentiation, this
structure disassembles and the perinuclear area
becomes transcriptionally active.75 Therefore, in the
nuclear periphery different subdomains can be
dynamically established with epigenetic marks as well
as signaling molecules; some are repressive and
enriched in facultative heterochromatin, while others
are permissive for transcription to occur when the
proper signal is received by the cell.

The importance of NL is highlighted by the exis-
tence of a group of pathologies known as laminopa-
thies that affect specific tissues and are caused either
by mutations in the lamin A/C (LMNA) gene or by
mutations in the FACE-1 gene affecting the correct
post-translational processing of prelamin A (reviewed
in76). It has been proposed that mutations that affect
lamins might disrupt their binding to yet unidentified
tissue-specific partner proteins to generate pathology
in a particular tissue (reviewed in65). Laminopathies
affecting the adipose tissue are characterized by lipo-
dystrophies with selective and variable loss of adipose
tissue accompanied by metabolic complications
including insulin resistance, type 2 diabetes, hypertri-
glyceridemia, and liver steatosis. These laminopathies

include Dunningan-type familial partial lipodystrophy
(DFPLD), partial lipodystrophy with mandibuloacral
dysplasia (MAD), both associated with mutations in
LMNA gene; Berardinelli-Seip congenital generalized
lipodystrophy (CGL); and some cases with Barraquer-
Simons acquired partial lipodystrophy (APL) associ-
ated with mutations in lamin B2.77 Lipodystrophy can
also be acquired, for example, in patients under treat-
ment for human immunodeficiency virus.78 Most of
the DFDLD mutations in LMNA are missense within
the 3�end of the gene, downstream of the nuclear local-
ization signal, and it has been proposed that these
mutations may alter the interactions of lamin A with
transcription factors or other DNA binding
molecules.79

The accumulation of the lamin A precursor has also
been described in lipodystrophic cells.80 The tran-
scription factor sterol regulatory element binding pro-
tein 1 (SRBP1) that is present in adipocytes interacts
with pre-lamin A in fibroblasts obtained from lipody-
strophic patients, as well as in fibroblasts from normal
subjects forced to accumulate pre-lamin A by treat-
ment with farnesylation inhibitors.80 It was proposed
that the lack of proper lamina maturation determines
the sequestration of SRBP1 at the nuclear rim, thus
decreasing the pool of active SRBP1 that normally
activates PPARg, a key regulator of the acquisition
and maintenance of the adipose phenotype,81,82 thus
impairing preadipocyte differentiation.80 It is note-
worthy that mutations in PPARg are also responsible
for other forms of partial lipodystrophy.83-85 Retention
of SREBP-1 at the NL and reduced PPARg expression
were also observed in 3T3-L1 preadipocytes treated
with some of the HIV protease inhibitors (i.e., Indina-
vir) employed in treatment of viral infection, drugs
that have been reported to cause lipodystrophy as a
side-effect.86 Therefore, SREBP-1 retention at the
nuclear rim of lipodystrophic cells can be associated
with the presence of increased levels of pre-lamin A
irrespective of the occurrence of LMNA mutations,
findings that help to explain the pathophysiology of
both inherited and acquired lipodystrophies. Further-
more, overexpression of both wild-type or of mutated
lamin A-R482A (present in DFPLD) in 3T3- L1 prea-
dipocytes inhibits lipid accumulation, triglyceride syn-
thesis and expression of adipogenic markers, such as
PPARg2.87 In contrast, embryonic fibroblasts lacking
A-type lamins accumulated more intracellular lipids,
exhibited elevated de novo triglyceride synthesis, and

NUCLEUS 253



increased basal activation of Akt1, a well known medi-
ator of insulin signaling.87 Therefore, A-type lamins
may act as inhibitors of adipocyte differentiation
when their expression level is inappropriate, consis-
tent with the proposal that mutations that cause lypo-
dystrophy may reflect a “gain of function” in these
proteins, resulting in higher binding affinity to pro-
adipogenic transcription factors such as SREBP-1,
that are sequestered at the NL and are thus prevented
from activating their target gene(s).

Ultrastructural studies suggest the presence of a dis-
persed lamin network throughout the nucleus.88,89

The existence of a dispersed, veil-like nucleoplasmic
lamin network was also shown using GFP-tagged lam-
ins and bleaching techniques, which showed that a
considerable fraction of intranuclear lamins, visible as
diffuse nucleoplasmic fluorescence, is stably integrated
in the nuclear interior.62,90 The exact molecular struc-
ture of this lamin veil is unknown; it possibly offers
the spatial possibility for lamins to interact with chro-
matin or to bind to nuclear histone proteins as shown
in vitro.91,92 Therefore, although the role of this fine
lamin network in cellular processes is so far unclear,
these findings suggest they provide a scaffold for tran-
scription and DNA replication. Interestingly, cell lines
transfected with GFP-lamins with mutations similar
to those found in Dunnigan’s type lipodystrophy
patients showed that these mutated lamins do not
incorporate properly into the nucleoplasmic veil,93

and in this manner possibly contribute to the abnor-
malities found in this type of lipodystrophy.

The nuclear lamina is reorganized at the onset of
adipogenesis

Analysis of the expression level of lamin A and the NE
transmembrane protein emerin at the onset of differ-
entiation of 3T3F442A preadipocytes showed that,
while lamin A expression progressively decreases,
emerin expression increases.94 Emerin participates in
the control of b-catenin95 whose sustained activation
inhibits the process of adipogenesis.96 Increased
expression of emerin controls the efficient redistribu-
tion of b-catenin from the nucleus to the cytoplasm,
facilitating its proteasomal degradation and conse-
quently allowing the process of adipocyte differentia-
tion to proceed.94 Interestingly, it was demonstrated
that the NL is fragmented at the early stages of adipo-
genesis97,98 (Fig. 1B), event that is accompanied by the

loss of not only lamin A, but also C, B1, and emerin at
the nuclear rim.97 Later on, upon maturation of the
adipose cell (day 18 post-induction of adipogenesis)
lamins A, C and B1 increase at the nuclear rim inde-
pendently of their low level of protein expression.97 In
contrast, lamin B2 remains at the nuclear rim
throughout the process of adipogenesis.97

Since the NL participates in the control of many
aspects of nuclear events as already described, it was
proposed that the decreased presence of most lamin
subtypes at the nuclear rim and the fragmentation of
the NL results in enhanced plasticity of the nucleus.97

In support of this, we have recently reported that the
high molecular weight immunophilin (IMM)
FKBP51, a member of the glucocorticoid receptor
(GR)�Hsp90�Hsp70�p23 heterocomplex required for
proper signaling of steroid nuclear receptors,74 trans-
locates from mitochondria to the nucleus at the onset
of adipogenesis.98,99 In the nucleus, FKBP51 not only
co-localizes with lamin B in the fragmented pattern of
the lamina (Fig. 1B), but also interacts with lamin B.98

The transient relocalization of FKBP51 from mito-
chondria to the nucleus depends on an increase in
intracellular cAMP and PKA activation.98 Interest-
ingly, PKA-ca also translocates to the nucleus, and
concentrates in the NL possibly through its interaction
with FKBP51.98 Several phosphorylation sites, includ-
ing those for the cyclin B1-(CCNB1)-CDC2 complex,
PKC, and PKA are important in nuclear lamina disas-
sembly.100,101 Therefore, we propose that enrichment
of PKA-ca in the NL may facilitate its reorganization
through phosphorylation of lamins during the process
of adipogenesis. We hypothesize that the accumula-
tion of PKA-ca in the NL may be also involved in the
control of gene expression at the onset of adipogenesis
possibly by regulating the phosphorylation of tran-
scription factors enriched in this nuclear compart-
ment, similar to a mechanism shown for the control
of AP-1 transcriptional activity upon the sequestration
of c-fos in the NL in an ERK1/2 dependent manner.102

Nuclear dynamics during adipogenesis can be ana-
lyzed in 3T3-L1 preadipocytes treated with dexameth-
asone, isobutyL-methylxantine (IBMX) and insulin to
induce the adipogenic program.103 Notably, co-treat-
ment of the preadipocytes with dexamethasone and
IBMX, which increases cAMP levels and activates
PKA, also increases the presence of GR in the nuclear
periphery, where it exhibits a high level of co-
localization with FKBP51. This observation raises the
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possibility that, dependent on cAMP-signaling, the
nuclear bioavailability of GR may be regulated by
FKBP51 which retains GR in the NL at the early stages
of adipogenesis; in this manner, the IMM may partici-
pate in regulating the expression of GR target genes.98

When the adipocyte phenotype is achieved, and possi-
bly upon maturation of adipocytes, the fraction of cells
expressing lamins A, C and B1 at the nuclear rim
increases, though overall lamin A/C protein levels
remain low,97 suggesting a mechanism that concen-
trates lamins in the nuclear periphery. Uncovering the
functional importance of such parallel changes in reg-
ulation of nuclear architecture will provide insight
into molecular mechanisms that control adipogenesis
as well as the pathophysiology of adipose tissue.

The organization and dynamics of the NL is also a
field of intensive research in the context of its inter-
connections with the NE, the cytoskeleton, and
mechano-signal transduction. Mechanical stress
exerted at the outer cell surface causes changes in
nuclear shape, possibly through the LINC complex.104

In this way, interactions between the plasma mem-
brane and the cytoskeleton may regulate gene expres-
sion in response to mechanical stress initiated at the
cell surface, with the advantage that mechano-trans-
duction propagation is faster than chemically based
diffusion.105,106 There is evidence that some NE pro-
teins are involved in gene regulation in response to
mechanical stress. In this regard, emerin knockout
mouse embryonic fibroblasts subjected to mechanical
stress are defective in expressing mechano-sensitive
genes.107 However, disruption of the LINC complex
does not always deregulate mechano-sensitive genes
in response to mechanical stress,108 raising the possi-
bility that other signaling pathways may act synergisti-
cally with mechano-transduction. Tissues can be
classified as being soft and stiff based on their capacity
for bearing low or high levels of mechanical stress,
respectively. Fat tissue, like brain and bone marrow,
belongs to the group of soft tissues. In line with this
classification, stem cells cultured on matrices of differ-
ent elasticity have different capacities to differentiate
into various cell types, as demonstrated for muscle
stem cells.109 This suggests that differentiation is
mechanosensitive. It has been recently shown that
matrix stiffness directly influences lamin A protein
levels.110 Bone marrow-derived mesenchymal stem
cells (MSCs) have a high lamin A: lamin B ratio that
possibly reflects their osteogenic niche origin.114

When MSC are grown on a soft matrix, the percentage
of cells that differentiate in adipose cells is higher than
the percentage obtained when MSCs are grown on a
stiff matrix (8% versus 1%, respectively).114 Interest-
ingly, knockdown of lamin A in MSCs greatly favored
their differentiation in adipose cells (»20%) on a soft
matrix.110 These observations are in line with the fact
that embryonic fibroblasts lacking A-type lamins
accumulate more intracellular lipids,87 and that during
the process of 3T3-L1 preadipocyte differentiation
there is a decrease in lamin A/C and B1.97 Overall, tis-
sue stiffness and mechanical stress-dependent changes
in lamin A levels, accompanied by differential expres-
sion of NE transmembrane proteins,111 may contrib-
ute to the architectural organization of the nucleus
that is ultimately required for the control of cell fate
choice. As we learn more of the dynamic reorganiza-
tion of the NL and the cytoskeleton during adipogene-
sis as a model of cell differentiation, an integrated and
better understanding of both the mechano-dependent
and -independent mechanisms of control of gene
expression will be achieved.

Does the nuclear matrix play a role in
adipogenesis?

The nuclear matrix (NM) (Fig. 1A) is defined as the
non-chromatin structure of the nucleus and is readily
observed in extracted cells under the electron micro-
scope,112 although its existence is still a topic under
discussion. The main feature of this non-chromatin
structure is its fibrogranular ribonucleoprotein (RNP)
network.113 NM preparations usually retain approxi-
mately 70% of the total nuclear RNA114 and RNAse
treatment destroys this nuclear structure.89,115,116 The
internal nuclear matrix is connected to the lamina and
fills the nuclear interior.117 Chromatin forms loops
that were first inferred from measurements of nuclear
sedimentation in ethidium bromide118 and confirmed
by their direct microscopic visualization after the
stripping of histones.119 Chromatin loops that range
in size from 30 to 110 kb in somatic cells120,121 and
from 20 to 50 kb in sperm,119,122 are formed by attach-
ments of chromatin to the NM. Chromatin interacts
with the NM through DNA sequences called matrix-
attachment regions (MARs) or scaffold-attachment
regions (SARs) that have 150-200 bp subregions that
can become single stranded under torsional stress.123

Studies performed in Drosophila have shown that
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MARs are interspersed in the genome at intervals of
26,000-112,000 kb,124 consistent with the estimated
sizes of chromatin loops in flies and mammals.120,125

MARs bind to specific NM and NL proteins, and one
of the best characterized MAR-binding protein is
SATB1, which is preferentially expressed in thymo-
cytes.126 Binding of MARs to the nuclear matrix usu-
ally enhances transcription, but it can sometimes
repress gene expression.127 The absence of SATB1
causes the de-repression of at least 2% of all genes,
leading to the blockade of normal T cell develop-
ment.128 This example of cell-type specificity of chro-
matin loop architecture in relation to developmentally
programmed gene expression demonstrates the
importance of nuclear matrix-chromatin interactions
in cells. To our knowledge, there is no specific
MAR-binding protein described for preadipocytes
and adipocytes. The finding of specific MAR-binding
protein(s) in adipose precursor cells will be relevant to
shed light on the mechanisms that control the repres-
sion or activation of genes for precursor cells to
acquire the adipocyte phonotype.

The protein composition of the nuclear matrix is
complex and analysis by 2D gel electrophoresis
revealed 200 major protein spots. A subset of these
proteins is cell-type specific, and the expression of
some proteins of the NM correlates with malignat
transformation.129,130 Lamins can be detected at sites
along nuclear filaments,89 but they do not seem to
form the structural core of the NM. NuMA (nuclear
mitotic apparatus protein) is a good example of a NM
protein, although its primary function during inter-
phase is not fully defined yet. NuMA shows homology
to some structural filament-forming proteins such as
cytokeratins, nuclear lamins and myosin heavy
chain.131,132 Overexpression of NuMA lacking the
nuclear localization signal results in cytoplasmic aggre-
gates,133 whereas overexpression of full-length NuMA
leads to the formation of a lattice-like structure in the
nucleus.133,134 NuMA can self-assemble into multi-
arm oligomers in vitro.134 Further, it is resistant to
detergent extraction and DNAse treatment, but a frac-
tion of NuMA also interacts with chromatin through
its binding to MARs.135 Such interaction may have an
impact in chromatin organization, as shown by
changes in chromatin epigenetic markers H4K20Me
and acetyl-H4 upon silencing of NuMA.136 Different
nuclear factors have been shown to be associated with
the NM, e.g. histone deacetylases, steroid hormone

receptors, oncogene proteins like c-myb,117 proteins of
the SWI/SNF complex,137 and the mitotic scaffold
associated protein Sc II.138 It has been proposed that
actively transcribing RNA polymerases are located on
the NM near actively transcribed genes, together with
bound transcription factors, facilitating their accessibil-
ity for binding to the promoter and regulating the
expression of their target genes.139-141

We showed that a fraction of C/EBPb, a transcrip-
tion factor required for proper adipogenesis,142,143 is
associated with the NM.144 The non-histone nuclear
protein Heterochromatin Protein (HP)1a interacts
with C/EBPb, restraining its transcriptional capacity.144

When we mapped the subnuclear domains where
HP1a -C/EBPb complexes localize, they were distrib-
uted mainly in heterochromatic domains, were also
found in euchromatin but were completely absent in
the NM.144 Thus, it is likely that the matrix-associated
fraction of C/EBPb that does not interact with HP1a
represents the potentially active pool of C/EBPb that
regulates specific genes such as c/ebpa, which is acti-
vated by C/EBPb at the onset of adipogenesis.144 It is
of note that active genes can be clustered in specialized
nuclear domains termed transcription factories145-147;
thus the C/EBPb pool associated with the NM may
efficiently regulate clusters of C/EBP target genes. Fur-
thermore, the fraction of C/EBPb associated with the
NM is also sensitive to treatment with the histone
deacetylase inhibitor Trichostatin A, suggesting that
acetylation of C/EBPb, and possibly of other nuclear
factors, may participate in the regulation of the equilib-
rium of C/EBPb bound to chromatin and the nuclear
matrix compartments.144,148

We also found that the high molecular weight
immunophilin FKBP51 interacts with the NM,
depending on the presence of ribonucleoproteins and/
or RNA.98 FKBP51 has been shown to be a negative
regulator of the transcriptional capacity of the GR as
well as the mineralocorticoid receptor (MR).149,150

Recent studies have revealed a dramatic and dynamic
modulation of the chromatin landscape during the
first hours of adipocyte differentiation.151-155 These
changes coincide with cooperative binding of early
adipogenic transcription factors to transcription factor
“hotspots.”154 GR is one of the transcription factors
that binds to more than 4,000 sites, and its binding
appears to be highly correlated with hypersensitivity
to DNase I treatment, suggesting that an open
chromatin structure may be required for GR binding,
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and/or that GR may be involved in early chromatin
remodeling without massive gene transcriptional acti-
vation.153,154 By analogy, one can speculate that in the
nuclear matrix compartment FKBP51 may interact
with co-repressors, co-activators and/or components
of the chromatin remodeling machinery, and in this
way exert its control on GR/MR-dependent gene
expression.

Does the genome’s 3D organization undergo
modifications during adipogenesis?

Mammalian cell nuclei with diameters in the range of
10-20 mm contain approximately 2 to 4 m of DNA in
G1 and in G2, respectively. DNA is wrapped around
histone octamers that constitute the nucleosomes, the
first level of chromatin organization.156 Chromatin
threads were named “chromosomes” by W. Waldeyer
in 1,888,157 referring symply to the staining properties
of the structures observed. By the end of the 19th and
the beginning of the 20th century, Theodor Boveri for-
mulated the hypothesis that each interphase chromo-
some occupies a distinct portion of the nuclear
volume, introducing the term and concept of chromo-
some territory (CT) (Fig. 1A).158 Almost a century
later, the existence of chromosome territories was
demonstrated in pioneering microlaser experiments
by Thomas and Christoph Cremer.162 They used
laser-UV-microirradiation to induce local genome
damage, followed by pulse-labeling of damaged DNA
with 3H-thymidine, and autoradiography to detect
3H-thymidine incorporation in nuclei fixed immedi-
ately after the pulse. They thus predicted that inflicting
DNA damage within a small volume of the nucleus
would yield different results depending on how chro-
mosomes were arranged. If chromosomes occupied
distinct territories, localized damage would affect only
a small subset of chromosomes, whereas if the chro-
matin fibers of each chromosome were randomly dis-
tributed throughout the nucleus, many of them would
be damaged. They showed that only a subset of the
chromosomes was damaged, providing the first exper-
imental evidence for the existence of CT.159 Later,
fluorescent in situ hybridization (FISH) techniques
and the generation of chromosome specific painting
probes for a large number of species allowed the direct
visualization of individual CTs and their study in the
interphase nucleus.160 The importance of the existence
of CTs is reinforced their conservation during

evolution over several hundred million years,161-164

demonstrating that the radial arrangement of chroma-
tin is a fundamental feature of nuclear architecture.
The impressive evolutionary conservation argues in
favor of an adaptative value, yet the functional impli-
cations of non-random radial arrangements are not
fully understood.

It is not known how the position of the CT is estab-
lished in the nucleus. Several studies reported a prefer-
ential positioning of gene-rich CTs toward the center
of the nucleus, and of gene-poor CTs toward the
nuclear periphery.165-169 In nuclei of cultured human
fibroblasts, which have a shape resembling a flat cylin-
der or ellipsoid, a size-dependent distribution of CTs
was described.166,169 CT organization is maintained
despite the extraction of more than 90% of the histo-
nes and other soluble proteins in DNA-rich nuclear
matrix preparations.170 The NM possibly provides a
scaffold or a basic structure to support CTs.116 It was
shown that complete extraction of the internal NM
components by RNase treatment followed by 2M
NaCl results in disruption of higher order CT archi-
tecture, supporting a role of NM in the conformation/
maintenance of the CTs architecture.116 The NM asso-
ciations suggest that CTs may be constrained with a
limited degree of mobility but with enough plasticity
to allow motion and possibly dynamic shape
changes.171,172 However, despite disruption of CTs
upon removal of the nuclear matrix, the DNA remains
predominantly inside the residual nuclear structure,
and a small amount of DNA can extend past the
nuclear lamina boundary forming a faint DNA
halo.116 These results suggest that the nuclear lamina
also plays a role in the anchoring of chromosomal
DNA and that specific territorial arrangements require
an intact NM.116 Indeed, in human cells, genome-wide
mapping of lamin B1 binding sites has shown that this
protein is not evenly bound to all chromosomes, and
that the number of lamin B1 interactions per chromo-
some correlates with their radial positioning.66 More-
over, modification of the expression of lamins
influences the radial positioning of some peripheral
CTs.173 Lamins interact with DNA at MARs and
LADs as well as at specific chromatin structures, such
as centromeres and telomeres (reviewed in174). It has
been demonstrated that lamin A/C and the lamin B
receptor (LBR), a NE transmembrane protein, not
only tethers heterochromatin to the nuclear periphery
but also mediates control of gene expression during
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cell differentiation.175 Since lamins are ubiquitously
distributed, it has been proposed that cell-type specific
combination of NE transmembrane proteins may help
to drive the spatial distribution of chromosomes, gen-
erating a genome organization distinctive to each cell
type (reviewed in65). However, it will be necessary to
explore whether cell-type specific components of the
NM may be partners of NE transmembrane proteins
in such a complex and whether it has a central func-
tion. In summary, the coordinated action of chroma-
tin interactions with components of the NM, lamins,
as well as with tissue specific NE transmembrane pro-
teins could control the precise positioning of chromo-
somes in the interphase nucleus.

Does the genome’s 3D organization undergo modi-
fications during adipogenesis? Kuroda et al examined
the relative and radial position of the CTs of human
chromosomes 12 and 16 during differentiation of pre-
adipocytes obtained from healthy female donors
undergoing cosmetic liposuction procedures.176 There
are 2 key aspects to consider with respect to CT posi-
tioning: the absolute radial location within the nucleus
and the position of CTs relative to one another. An
increased size of CT16, as well as a close association
between territories of chromosomes 12 and 16 due to
changes in the relative positioning between them were
found in differentiated adipocytes, an association not
observed in preadipocytes.176 This change in the rela-
tive positioning of CTs 12 and 16 may play a role in
the t(12;16)(q13.3;p11.2) translocation present in 95-
98% of myxoid and rounded cell liposarcomas. This
chromosomal translocation creates a chimeric onco-
gene comprising part of the TLS/FUS gene found at
16p11.2 and part of the CHOP gene found at
12q13.3.177-180 The resultant fusion protein is crucial
because it deregulates the expression of the adipocyte
differentiation gene DOL54.181 In spite of not knowing
the molecular mechanism that leads to specific trans-
locations in tumor cells, close juxtaposition of inter-
phase chromosomes may play an important role, as
shown in chronic myeloid and promyelocytic leuke-
mias.182-185 Although further studies are required to
elucidate the mechanism underlying the adipocyte-
specific changes in position of chromosomes 12 and
16, this study provided the first evidence of the relative
repositioning of CTs during adipogenesis.

A non-random positioning of CTs was also demon-
strated during the differentiation of mesenchymal
stem cells (MSC) derived from porcine bone marrow,

with the most dramatic change in position observed
for CT4 moving from the nuclear periphery toward
the nuclear interior.186 In addition, using 3D FISH
analysis, it was shown that the architecture of CT
changed during the course of MSC adipocyte differen-
tiation. In undifferentiated MSCs, CTs are condensed
with gene signals buried inside them. In contrast, in
adipose-differentiated MSC, CTs are decondensed,
exhibiting approximately twice the size compared to
nuclei prior induction of adipogenesis; they also dis-
play loops of chromatin emanating from the CT with
the gene signal at the end of the loop, oriented toward
the nuclear interior.186 The nuclear positions of genes
and the CTs carrying these gene loci have also been
examined. The nuclear position of genes involved in
adipogenesis is altered: genes that become more inter-
nally located in the nucleus are actively transcribed,
while genes that move toward the nuclear periphery
are down–regulated.186 More dramatic differences in
localization were found for gene loci than for CTs,
revealing genes moving from the nuclear periphery to
the interior (PPARG, FABP4, GATA2), from an inter-
mediate position to the nuclear interior (SREBF1,
CEBPB) and from a peripheral to an intermediate
location (CREB).186 Thus 6 out of 7 genes required for
proper differentiation significantly change their
nuclear location during adipogenesis. An interesting
gene behavior is exhibited by GATA2, whose expres-
sion is restricted to preadipocytes where it exerts an
antiadipogenic effect by the direct suppression of
PPARg.187 GATA2 relocates from a peripheral nuclear
location to the interior at day 7 post-induction of adi-
pogenesis of MSC, coinciding with its highest level of
expression.186 By day 14, its expression falls and the
gene localizes in the nuclear periphery again, consis-
tent with the concept that the nuclear periphery acts
as a transcriptional repressive domain. Furthermore,
when MSC are differentiated, PPARG, SREBF1,
FABP4 and GATA2 reside in a different compartment
relative to their parent chromosome, showing that
genes associated with adipogenesis loop out from their
CT during differentiation and suggesting that this
event is possibly associated with their increased
expression.186

Insight into how chromatin is organized within
CTs has been advanced by the development of chro-
mosome conformation capture (3C)188 and derivative
methods (4C, 5C, HI-C and single cell HI-C)189-193

which allow delineation of the organization of
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chromosomes in the 3-dimensional space of the inter-
phase nucleus. With this information, when we zoom
into chromosomal structure, we find that chromo-
somes are comprised of topologically associating
domains (TADs) (Fig. 1A) defined as regions of high
local contact frequency, separated by boundaries
where contacts are relatively infrequent.194-196 In spite
of TADs being too small to be visualized by micros-
copy-based methods, data obtained by FISH analysis
is consistent with data obtained by 3C and related
techniques.194,195,197 Mammalian genomes contain
approximately 2000 TADs, and the CCCTC-binding
factor and cohesin mediate their establishment and/or
maintenance.194,197-199 Several chromatin associated
proteins, transcription factors and cofactors partici-
pate in chromatin interactions of TADs that preferen-
tially are intra-chromosomal rather than inter-
chromosomal.192,196,200 Over one million interactions
between loci have been detected genome-wide; these
contacts make possible the interaction between
enhancers and promoters that are kb distances in a
linear sense but are in close physical proximity.201 The
3D organization of enhancers and promoters facili-
tates the interaction between protein complexes
bound at enhancers with those bound at promoters,
and can thereby modulate gene transcription in a cell-
type specific manner. The same TAD can be found in
different cell types or differentiation steps, but may be
located in a different nuclear compartment (active vs.
inactive), as part of a mechanism of control of cell-
type or differentiation dependent gene expression. By
3C assay, the PPARG promoter is positioned in prox-
imity to the promoters of genes encoding adipokines
such as leptin and adiponectin, as well as of genes that
encode lipid droplet-associated proteins.202 This posi-
tioning event takes place at early time points post-
induction of adipogenesis, when these genes are not
actively expressed, but when changes occur in chro-
matin accessibility and occupancy of the PPARg pro-
moter by transcription factors responsible for its
activation.151,154,203 PPARG is not actively expressed at
this early time, possibly because it requires chromatin
remodeling events that take place later as differentia-
tion progresses.153,154,204 The intergenic interactions of
the PPARG promoter are dependent on C/EBPb, since
knockdown of this transcription factor, required for
proper differentiation, abrogates the interactions.202

Furthermore, pharmacological inhibition of PKA or
knockdown of the catalytic subunits of the kinase also

prevent the intergenic interactions of the PPARG pro-
moter, indicating that genome reorganization, at least
for the PPARG loci, depends on c-AMP-PKA
signaling.202

Once the organization of the genome is established in
white, brown or beige adipocytes, the chromatin becomes
stable, based on the fact that during browning of human
white adipose cells by long-term exposure to PPARg ago-
nists, considerable changes in gene expression are found
without major changes in the chromatin landscape.205

Superenhancers have been defined as clusters of
enhancers that constitute regulatory nodes controlling
expression of genes defining cell identity.206 When
PPARg-binding sites located within 12.5 kb from each
other were ranked according to the intensity of their
Mediator complex subunit 1 signal, over 1100 PPARg
superenhancers were identified in beige adipocytes, and
324 of them were exclusively present in beige adipose
cells.205 These particular PPARg superenhancers are in
the vicinity of beige-selective genes which encode func-
tionally important metabolic regulators involved in fatty
acid degradation and b-oxidation. Thus during the
reprogramming events of white adipose to beige cells,
although no major changes in chromatin take place, the
selective activation of PPARg superenhancers seems to
be required.205 Overall the physical association of coordi-
nately regulated genes facilitates their control, suggesting
that active co-regulated genes generate nuclear hot spots
for precise and efficient control of transcription.

Future perspectives

When adipogenesis is triggered the architecture of the
nucleus of progenitor cells undergoes substantial modifi-
cations (Fig. 1C). The NL is reorganized, CTs decon-
densed and change their relative position, adipogenic
genes such as C/EBPb and PPARg undergo reposition-
ing, accompanied by dramatic changes in chromatin
accessibility, promoters occupancy and superenhancers
formation among many other modifications. However,
many questions are still waiting for answers, to gain
insight not only into adipogenesis, but into cell differenti-
ation processes in general. How are nuclear compart-
ments established to produce a precise pattern of gene
expression? Is this a cause or a consequence of the differ-
entiation program? It has been extensively studied all the
signaling pathways that control the process of adipogene-
sis (reviewed in10,143), but how do biochemical and
mechanical signaling are coordinately transduced in the
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organization of nuclear compartments in the adipose or
any other cell fate determination? It is known that active
genes are preferentially localized in euchromatin, and in
many cases even loop out of their CT. In contrast, when
genes that normally reside in euchromatin translocate to
centromeric heterochromatin or are preferentially posi-
tioned at the nuclear periphery during cell differentiation,
they are silenced. How are these events regulated?Which
signals required for cells to differentiate are transduced
by changes of the nuclear architecture? We still know
very little about the 3D organization of the genome dur-
ing adipogenesis, but undoubtedly, future studies will
unveil the relationships between the architecture of the
genome and the control of gene expression, as part of the
mechanism that controls the acquisition of the pheno-
type of the different types of adipose cells. These studies
will depend, in part, on new technologies to prove or dis-
prove the proposed models. After all, Boveri’s hypothesis
on the existence of CTs waited for almost a century for
experimental verification. Studying the dynamics of
nuclear architecture during adipogenesis will increase
our knowledge of themechanisms that control cell differ-
entiation, while enhancing our ability to understand adi-
posemetabolism in health and disease.
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