270 research outputs found

    Modélisation de cheveux à partir d'images par étude des variations d'apparence en fonction des conditions d'éclairage

    Get PDF
    National audienceLes applications graphiques nĂ©cessitant l'intĂ©gration de maquettes virtuelles d'individus se sont multipliĂ©es au cours de ces derniĂšres annĂ©es. Les jeux vidĂ©os ou la tĂ©lĂ©confĂ©rence en sont les principaux exemples. Les cheveux jouant un rĂŽle significatif dans l'identification d'une personne, il est primordial de les reprĂ©senter avec le plus de fidĂ©litĂ© possible. Les techniques de numĂ©risation tridimensionnelle usuelles ÂŽĂ©chouent face Ă  l'extrĂȘme complexitĂ© gĂ©omĂ©trique des cheveux, qui sont l'enchevĂȘtrement de dizaines de milliers d'Ă©lĂ©ments quasi invisibles Ă  l'oeil nu. Cet article prĂ©sente une mĂ©thode qui permet d'extraire la gĂ©omĂ©trie des mĂȘches de cheveux `Ă  partir de photographies par analyse de rĂ©flectance. Le sujet est observĂ© selon un point de vue fixe et est Ă©clairĂ© par une source lumineuse mobile. Chaque mĂȘche de cheveux rĂ©flĂ©chissant la lumiĂšre selon une direction dĂ©pendant de son orientation, l'idĂ©e consiste Ă  retrouver celle-ci `Ă  l'aide d'un modĂšle de rĂ©flectance de cheveu et `Ă  partir des cartes de rĂ©flectances observĂ©es. AprĂšs un bref ÂŽĂ©tat de l'art, nous dĂ©crirons dans la section 3 l'approche choisie dans son ensemble. Puis, dans la partie 4, nous donnerons une mise en oeuvre possible pour celle-ci. Enfin, dans les sections 5 et 6 nous prĂ©senterons les rĂ©sultats ainsi que la conclusion et les perspectives

    Implicit Brushes for Stylized Line-based Rendering

    Get PDF
    International audienceWe introduce a new technique called Implicit Brushes to render animated 3D scenes with stylized lines in real-time with temporal coherence. An Implicit Brush is defined at a given pixel by the convolution of a brush footprint along a feature skeleton; the skeleton itself is obtained by locating surface features in the pixel neighborhood. Features are identified via image-space ïŹtting techniques that not only extract their location, but also their proïŹle, which permits to distinguish between sharp and smooth features. ProïŹle parameters are then mapped to stylistic parameters such as brush orientation, size or opacity to give rise to a wide range of line-based styles

    Image-Based Hair Capture by Inverse Lighting

    Get PDF
    International audienceWe introduce an image-based method for modeling a specific subject's hair. The principle of the approach is to study the variations of hair illumination under controlled illumination. The use of a stationary viewpoint and the assumption that the subject is still allows us to work with perfectly registered images: all pixels in an image sequence represent the same portion of the hair, and the particular illumination profile observed at each pixel can be used to infer the missing degree of directional information. This is accomplished by synthesizing reflection profiles using a hair reflectance model, for a number of candidate directions at each pixel, and choosing the orientation that provides the best profile match. Our results demonstrate the potential of this approach, by effectively reconstructing accurate hair strands that are well highlighted by a particular light source movement

    Axial symptoms predict mortality in patients with Parkinson disease and subthalamic stimulation.

    Get PDF
    OBJECTIVE To characterize how disease progression is associated with mortality in a large cohort of patients with Parkinson disease (PD) with long-term follow-up after subthalamic nucleus deep brain stimulation (STN-DBS). METHODS Motor and cognitive disabilities were assessed before and 1, 2, 5, and 10 years after STN-DBS in 143 consecutive patients with PD. We measured motor symptoms "off" and "on" levodopa and STN-DBS and recorded causes of death. We used linear mixed models to characterize symptom progression, including interactions between treatment conditions and time to determine how treatments changed efficacy. We used joint models to link symptom progression to mortality. RESULTS Median observation time was 12 years after surgery, during which akinesia, rigidity, and axial symptoms worsened, with mean increases of 8.8 (SD 6.5), 1.8 (3.1), and 5.4 (4.1) points from year 1-10 after surgery ("on" dopamine/"on" STN-DBS), respectively. Responses to dopaminergic medication and STN-DBS were attenuated with time, but remained effective for all except axial symptoms, for which both treatments and their combination were predicted to be ineffective 20 years after surgery. Cognitive status significantly declined. Forty-one patients died, with a median time to death of 9 years after surgery. The current level of axial disability was the only symptom that significantly predicted death (hazard ratio 4.30 [SE 1.50] per unit of square-root transformed axial score). CONCLUSIONS We quantified long-term symptom progression and attenuation of dopaminergic medication and STN-DBS treatment efficacy in patients with PD and linked symptom progression to mortality. Axial disability significantly predicts individual risk of death after surgery, which may be useful for planning therapeutic strategies in PD

    Exhaustive analysis of BH4 and dopamine biosynthesis genes in patients with Dopa-responsive dystonia

    Get PDF
    Dopa-responsive dystonia is a childhood-onset dystonic disorder, characterized by a dramatic response to low dose of l-Dopa. Dopa-responsive dystonia is mostly caused by autosomal dominant mutations in the GCH1 gene (GTP cyclohydrolase1) and more rarely by autosomal recessive mutations in the TH (tyrosine hydroxylase) or SPR (sepiapterin reductase) genes. In addition, mutations in the PARK2 gene (parkin) which causes autosomal recessive juvenile parkinsonism may present as Dopa-responsive dystonia. In order to evaluate the relative frequency of the mutations in these genes, but also in the genes involved in the biosynthesis and recycling of BH4, and to evaluate the associated clinical spectrum, we have studied a large series of index patients (n = 64) with Dopa-responsive dystonia, in whom dystonia improved by at least 50% after l-Dopa treatment. Fifty seven of these patients were classified as pure Dopa-responsive dystonia and seven as Dopa-responsive dystonia-plus syndromes. All patients were screened for point mutations and large rearrangements in the GCH1 gene, followed by sequencing of the TH and SPR genes, then PTS (pyruvoyl tetrahydropterin synthase), PCBD (pterin-4a-carbinolamine dehydratase), QDPR (dihydropteridin reductase) and PARK2 (parkin) genes. We identified 34 different heterozygous point mutations in 40 patients, and six different large deletions in seven patients in the GCH1 gene. Except for one patient with mental retardation and a large deletion of 2.3 Mb encompassing 10 genes, all patients had stereotyped clinical features, characterized by pure Dopa-responsive dystonia with onset in the lower limbs and an excellent response to low doses of l-Dopa. Dystonia started in the first decade of life in 40 patients (85%) and before the age of 1 year in one patient (2.2%). Three of the 17 negative GCH1 patients had mutations in the TH gene, two in the SPR gene and one in the PARK2 gene. No mutations in the three genes involved in the biosynthesis and recycling of BH4 were identified. The clinical presentations of patients with mutations in TH and SPR genes were strikingly more complex, characterized by mental retardation, oculogyric crises and parkinsonism and they were all classified as Dopa-responsive dystonia-plus syndromes. Patient with mutation in the PARK2 gene had Dopa-responsive dystonia with a good improvement with l-Dopa, similar to Dopa-responsive dystonia secondary to GCH1 mutations. Although the yield of mutations exceeds 80% in pure Dopa-responsive dystonia and Dopa-responsive dystonia-plus syndromes groups, the genes involved are clearly different: GCH1 in the former and TH and SPR in the late

    Interference of functional dual-tasks on gait in untrained people with Parkinson's disease and healthy controls: a cross-sectional study

    Full text link
    [EN] Background In Parkinson's disease (PD) population, performing secondary tasks while walking further deteriorates gait and restrict mobility in functional contexts of daily life. This study (1) analyzed the interference of functional cognitive and motor secondary task on untrained people with PD and (2) compared their walking with healthy subjects. Methods Forty people with PD (aged 66.72 [7.5] years, Hoehn and Yahr stage I-II-III, on-medication) composed the PD group (PDG) and 43 participants (aged 66.60 [8.75] years) formed the group of healthy counterparts (HG). Gait was evaluated through spatiotemporal, kinematic and kinetic outcomes in five conditions: single task (ST) and visual, verbal, auditory and motor dual-task (DT). Results The velocity, stride length, and braking force performance of both groups was statistically higher in the ST condition than in verbal, auditory and motor DT (p.05). Conclusions: In untrained participants with PD, verbal and motor secondary tasks affect gait significantly, while auditory and visual tasks interfere to a lesser extent. Untrained people with PD have a poorer gait performance than their healthy counterparts, but in different grades according to the analyzed variables. Trial registration The data in this paper are part of a single-blind, randomized, controlled trial and correspond to the evaluations performed before a physical rehabilitation program, retrospectively registered with the number at clinicaltrial.govNCT04038866.San MartĂ­n Valenzuela, C.; Dueñas MoscardĂł, L.; Lopez Pascual, J.; Serra-Añó, P.; TomĂĄs, JM. (2020). Interference of functional dual-tasks on gait in untrained people with Parkinson's disease and healthy controls: a cross-sectional study. BMC Musculoskeletal Disorders. 21(1):1-11. https://doi.org/10.1186/s12891-020-03431-xS111211Jankovic J. Parkinson’s disease: clinical features and diagnosis. J Neurol Neurosurg Psychiatry. 2008;79:368–76.Soh S-E, McGinley JL, Watts JJ, Iansek R, Murphy AT, Menz HB, et al. Determinants of health-related quality of life in people with Parkinson’s disease: a path analysis. Qual Life Res. 2013;22:1543–53.Tan D, Danoudis M, McGinley J, Morris ME. Relationships between motor aspects of gait impairments and activity limitations in people with Parkinson’s disease: a systematic review. Parkinsonism Relat Disord. 2012;18:117–24.Kelly VE, Eusterbrock AJ, Shumway-Cook A. A review of dual-task walking deficits in people with Parkinson’s disease: motor and cognitive contributions, mechanisms, and clinical implications. Parkinson’s Disease. 2012;918719.Sofuwa O, Nieuwboer A, Desloovere K, Willems A-M, Chavret F, Jonkers I. Quantitative gait analysis in Parkinson’s disease: comparison with a healthy control group. Arch Phys Med Rehabil. 2005;86:1007–13.Beauchet O, Berrut G. Gait and dual-task: definition, interest, and perspectives in the elderly. Psychologie et NeuroPsychiatrie du Vieillissement. 2006;4:215–25.Raffegeau TE, Krehbiel LM, Kang N, Thijs FJ, Altmann LJP, Cauraugh JH, et al. A meta-analysis: Parkinson’s disease and dual-task walking. Parkinsonism Relat Disord. 2019 May;62:28–35.Eric R. Kandel, James H. Schwartz, Thomas M. Jessell, Steven a. Siegelbaum, A. J. Hudspeth. Principles of neural science. Fifth edition. McGraw-Hill Medical: United States of America; 2013.Eisinger RS, Cernera S, Gittis A, Gunduz A, Okun MS. A review of basal ganglia circuits and physiology: application to deep brain stimulation. Parkinsonism Relat Disord. 2019 Feb;59:9–20.Isella V, Mapelli C, Morielli N, De Gaspari D, Siri C, Pezzoli G, et al. Validity and metric of MiniMental Parkinson and MiniMental state examination in Parkinson’s disease. Neurol Sci. 2013;34:1751–8.Morris ME, McGinley J, Huxham F, Collier J, Iansek R. Constraints on the kinetic, kinematic and spatiotemporal parameters of gait in Parkinson’s disease. Hum Mov Sci. 1999;18:461–83.Brauer SG, Morris ME. Can people with Parkinson’s disease improve dual tasking when walking? Gait & Posture. 2010;31:229–33.Baron EI, Miller Koop M, Streicher MC, Rosenfeldt AB, Alberts JL. Altered kinematics of arm swing in Parkinson’s disease patients indicates declines in gait under dual-task conditions. Parkinsonism Relat Disord. 2018;48:61–7.Rochester L, Galna B, Lord S, Burn D. The nature of dual-task interference during gait in incident Parkinson’s disease. Neuroscience. 2014;265:83–94.Logan D, Kiemel T, Dominici N, Cappellini G, Ivanenko Y, Lacquaniti F, et al. The many roles of vision during walking. Exp Brain Res. 2010;206:337–50.de Luna RA, Mihailovic A, Nguyen AM, Friedman DS, Gitlin LN, Ramulu PY. The Association of Glaucomatous Visual Field Loss and Balance. Transl Vis Sci Technol. 2017 May 22;6(3):8.Suarez H, Geisinger D, Ferreira ED, Nogueira S, Arocena S, Roman CS, et al. Balance in Parkinson’s disease patients changing the visual input. Brazilian Journal of Otorhinolaryngology. 2011;77:651–5.Wu T, Hallett M. Neural correlates of dual task performance in patients with Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2008;79:760–6.Canning CG. The effect of directing attention during walking under dual-task conditions in Parkinson’s disease. Parkinsonism Relat Disord. 2005;11:95–9.Wu T, Liu J, Zhang H, Hallett M, Zheng Z, Chan P. Attention to automatic movements in Parkinson’s disease: modified automatic mode in the striatum. Cereb Cortex. 2015;25:3330–42.de Roiz R. M, Cacho EWA, Pazinatto MM, Reis JG, Cliquet a. Barasnevicius-Quagliato EMA Gait analysis comparing Parkinson’s disease with healthy elderly subjects Arq Neuropsiquiatr. 2010;68:81–6.Grabli D, Karachi C, Welter M-L, Lau B, Hirsch EC, Vidailhet M, et al. Normal and pathological gait: what we learn from Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2012 Oct;83(10):979–85.Anna C, Serena F, Maurizio F. Del Sorbo Francesca, Romito Luigi M., Elia Antonio E., et al. quantitative gait analysis in parkin disease: possible role of dystonia. Mov Disord. 2016;31:1720–8.Morris M, Iansek R, McGinley J, Matyas T, Huxham F. Three-dimensional gait biomechanics in Parkinson’s disease: evidence for a centrally mediated amplitude regulation disorder. Mov Disord. 2005;20:40–50.Peterson CL, Kautz SA, Neptune RR. Braking and propulsive impulses increase with speed during accelerated and decelerated walking. Gait Posture. 2011;33:562–7.Chiu M-C, Wang M-J. The effect of gait speed and gender on perceived exertion, muscle activity, joint motion of lower extremity, ground reaction force and heart rate during normal walking. Gait & Posture. 2007;25:385–92.Muniz AMS, Liu H, Lyons KE, Pahwa R, Liu W, Nobre FF, et al. Comparison among probabilistic neural network, support vector machine and logistic regression for evaluating the effect of subthalamic stimulation in Parkinson disease on ground reaction force during gait. J Biomech. 2010;43:720–6.Chastan N, Do MC, Bonneville F, Torny F, Bloch F, Westby GWM, et al. Gait and balance disorders in Parkinson’s disease: impaired active braking of the fall of Centre of gravity. Mov Disord. 2009;24:188–95.Perneger T. What's wrong with Bonferroni adjustments. BMJ. 1998 Apr 18;316(7139):1236–8
    • 

    corecore