55 research outputs found

    L'avifaune de l'habitat fortifié Chalcolitique de Leceia (Oeiras, Portugal)

    Get PDF
    As escavaçÔes conduzidas em Leceia por um de nĂłs (J. L. C.), em continuidade desde 1983, permitiram a recolha de um copioso conjunto de artefactos e de ecofactos, cujo estudo se encontra em curso. Neste estudo apresentam-se os resultados concernantes Ă  avifauna recolhida nas Camadas 4 (do Neolitico final), 3 (do CalcolĂ­tico inicial) e 2 (do CalcolĂ­tico pleno) no decurso das doze campanhas arqueolĂłgicas ali realizadas (atĂ© 1994). Identificaram-se onze tĂĄxones, sendo de salientar a ocorrĂȘncia do ganso-patola (Sula bassana) em todas as camadas, do fulmar (Fulmarus glacialis) e do pigargo (Haliaeetus albicilla) na camada 3, que actualmente nĂŁo frequentam, ao menos usualmente, a regiĂŁo. Do ponto de vista arqueozoolĂłgico, discute-se a ocorrĂȘncia destes e dos restantes taxones identificados - ĂĄguia (Aquila sp.); perdiz vermelha (Alectoris rufa); galo (?) (cf. Gallus gallus); grou comum (Grus grus); pombo das rochas (Colurnba livia/oenas); corvo (Corvus corax); Alaudidae; e Turdidae - como fontes alimentares ou de matĂ©ria-prima para o fabrico de diversos artefactos Ăłsseos, documentados por diversas ocorrĂȘncias

    The lavender plumage colour in Japanese quail is associated with a complex mutation in the region of MLPH that is related to differences in growth, feed consumption and body temperature

    Get PDF
    Background The lavender phenotype in quail is a dilution of both eumelanin and phaeomelanin in feathers that produces a blue-grey colour on a wild-type feather pattern background. It has been previously demonstrated by intergeneric hybridization that the lavender mutation in quail is homologous to the same phenotype in chicken, which is caused by a single base-pair change in exon 1 of MLPH. Results In this study, we have shown that a mutation of MLPH is also associated with feather colour dilution in quail, but that the mutational event is extremely different. In this species, the lavender phenotype is associated with a non-lethal complex mutation involving three consecutive overlapping chromosomal changes (two inversions and one deletion) that have consequences on the genomic organization of four genes (MLPH and the neighbouring PRLH, RAB17 and LRRFIP1). The deletion of PRLH has no effect on the level of circulating prolactin. Lavender birds have lighter body weight, lower body temperature and increased feed consumption and residual feed intake than wild-type plumage quail, indicating that this complex mutation is affecting the metabolism and the regulation of homeothermy. Conclusions An extensive overlapping chromosome rearrangement was associated with a non-pathological Mendelian trait and minor, non deleterious effects in the lavender Japanese quail which is a natural knockout for PRLH

    Numerical prediction of saturation in dual scale fibrous reinforcements during Liquid Composite Molding

    Full text link
    This paper presents a fractional flow model based on two-phase flow, resin and air, through a porous medium to simulate numerically Liquid Composites Molding (LCM) processes. It allows predicting the formation, transport and compression of voids in the modeling of LCM. The equations are derived by combining Darcy’s law and mass conservation for each phase (resin/air). In the model, the relative permeability and capillary pressure depend on saturation. The resin is incompressible and the air slightly compressible. Introducing some simplifications, the fractional flow model consists of a saturation equation coupled with a pressure/velocity equation including the effects of air solubility and compressibility. The introduction of air compressibility in the pressure equation allows for the numerical prediction of the experimental behavior at low constant resin injection flow rate. A good agreement was obtained between the numerical prediction of saturation in a glass fiber reinforcement and the experimental observations during the filling of a test mold by Resin Transfer Molding (RTM). 2015 Elsevier Ltd. All rights reserved.The authors acknowledge financial support of the Spanish Government (Project DPI2013-44903-R-AR).Gascón Martínez, ML.; García Manrique, JA.; Lebel, F.; Ruiz, E.; Trochu, F. (2015). Numerical prediction of saturation in dual scale fibrous reinforcements during Liquid Composite Molding. Composites Part A: Applied Science and Manufacturing. 77:275-284. https://doi.org/10.1016/j.compositesa.2015.05.019S2752847

    Survival kit for the afterlife or instruction manual for prehistorians? Staging artefact production in Middle Neolithic cemetery Kadruka 23, Upper Nubia, Sudan

    Full text link
    The burials at the Neolithic cemetery Kadruka 23 in Sudan have yielded adornments and bone and lithic artefacts that occur as distinct stages of the chaßne opératoire. This article reports on a hitherto unrecognised funerary practice that highlights the importance of craftsmanship for Neolithic communities in life and beyond. Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of Antiquity Publications Ltd

    Cryptic patterning of avian skin confers a developmental facility for loss of neck feathering

    Get PDF
    Vertebrate skin is characterized by its patterned array of appendages, whether feathers, hairs, or scales. In avian skin the distribution of feathers occurs on two distinct spatial levels. Grouping of feathers within discrete tracts, with bare skin lying between the tracts, is termed the macropattern, while the smaller scale periodic spacing between individual feathers is referred to as the micropattern. The degree of integration between the patterning mechanisms that operate on these two scales during development and the mechanisms underlying the remarkable evolvability of skin macropatterns are unknown. A striking example of macropattern variation is the convergent loss of neck feathering in multiple species, a trait associated with heat tolerance in both wild and domestic birds. In chicken, a mutation called Naked neck is characterized by a reduction of body feathering and completely bare neck. Here we perform genetic fine mapping of the causative region and identify a large insertion associated with the Naked neck trait. A strong candidate gene in the critical interval, BMP12/GDF7, displays markedly elevated expression in Naked neck embryonic skin due to a cis-regulatory effect of the causative mutation. BMP family members inhibit embryonic feather formation by acting in a reaction-diffusion mechanism, and we find that selective production of retinoic acid by neck skin potentiates BMP signaling, making neck skin more sensitive than body skin to suppression of feather development. This selective production of retinoic acid by neck skin constitutes a cryptic pattern as its effects on feathering are not revealed until gross BMP levels are altered. This developmental modularity of neck and body skin allows simple quantitative changes in BMP levels to produce a sparsely feathered or bare neck while maintaining robust feather patterning on the body. © 2011 Mou et al

    The quail genome:insights into social behaviour, seasonal biology and infectious disease response

    Get PDF
    Background: The Japanese quail (Coturnix japonica) is a popular domestic poultry species and an increasingly significant model species in avian developmental, behavioural and disease research. Results: We have produced a high-quality quail genome sequence, spanning 0.93 Gb assigned to 33 chromosomes. In terms of contiguity, assembly statistics, gene content and chromosomal organisation, the quail genome shows high similarity to the chicken genome. We demonstrate the utility of this genome through three diverse applications. First, we identify selection signatures and candidate genes associated with social behaviour in the quail genome, an important agricultural and domestication trait. Second, we investigate the effects and interaction of photoperiod and temperature on the transcriptome of the quail medial basal hypothalamus, revealing key mechanisms of photoperiodism. Finally, we investigate the response of quail to H5N1 influenza infection. In quail lung, many critical immune genes and pathways were downregulated after H5N1 infection, and this may be key to the susceptibility of quail to H5N1. Conclusions: We have produced a high-quality genome of the quail which will facilitate further studies into diverse research questions using the quail as a model avian species

    The Crest Phenotype in Chicken Is Associated with Ectopic Expression of HOXC8 in Cranial Skin

    Get PDF
    The Crest phenotype is characterised by a tuft of elongated feathers atop the head. A similar phenotype is also seen in several wild bird species. Crest shows an autosomal incompletely dominant mode of inheritance and is associated with cerebral hernia. Here we show, using linkage analysis and genome-wide association, that Crest is located on the E22C19W28 linkage group and that it shows complete association to the HOXC-cluster on this chromosome. Expression analysis of tissues from Crested and non-crested chickens, representing 26 different breeds, revealed that HOXC8, but not HOXC12 or HOXC13, showed ectopic expression in cranial skin during embryonic development. We propose that Crest is caused by a cis-acting regulatory mutation underlying the ectopic expression of HOXC8. However, the identification of the causative mutation(s) has to await until a method becomes available for assembling this chromosomal region. Crest is unfortunately located in a genomic region that has so far defied all attempts to establish a contiguous sequence

    Copy Number Variation in Intron 1 of SOX5 Causes the Pea-comb Phenotype in Chickens

    Get PDF
    Pea-comb is a dominant mutation in chickens that drastically reduces the size of the comb and wattles. It is an adaptive trait in cold climates as it reduces heat loss and makes the chicken less susceptible to frost lesions. Here we report that Pea-comb is caused by a massive amplification of a duplicated sequence located near evolutionary conserved non-coding sequences in intron 1 of the gene encoding the SOX5 transcription factor. This must be the causative mutation since all other polymorphisms associated with the Pea-comb allele were excluded by genetic analysis. SOX5 controls cell fate and differentiation and is essential for skeletal development, chondrocyte differentiation, and extracellular matrix production. Immunostaining in early embryos demonstrated that Pea-comb is associated with ectopic expression of SOX5 in mesenchymal cells located just beneath the surface ectoderm where the comb and wattles will subsequently develop. The results imply that the duplication expansion interferes with the regulation of SOX5 expression during the differentiation of cells crucial for the development of comb and wattles. The study provides novel insight into the nature of mutations that contribute to phenotypic evolution and is the first description of a spontaneous and fully viable mutation in this developmentally important gene
    • 

    corecore