163 research outputs found

    Multi-stylistic fluency on the saxophone: Delineating pedagogical strategies for the interpretation of jazz-influenced classical saxophone works

    Get PDF
    Since the beginning of the twentieth century, classical saxophone composers have consistently looked for ways to blur the lines that divide the jazz and the classical genres by creating works that borrow musical elements from the other. This means classical saxophonists are presented with a challenge that other classical musicians rarely have to face – interpreting jazz influenced classical works with only classical training. In recognising the need for classical saxophonist to acquire these interpretive skills, researchers and pedagogues have begun exploring ways of integrating both classical and jazz styles into saxophone practice routines. While the current literature in this field acknowledges the benefits and challenges of moving from one style to another and offer glimpses of technical work that might help achieve such fluency, little research has gone into charting out areas of agreement that might be considered “best practice” in relation to the acquisition of multi-stylistic fluency on the saxophone and even less has been undertaken in terms of unpacking these areas of agreement in relation to pedagogical approach. This thesis attempts to find ways of improving the current pedagogical practice for multistylistic fluency on saxophone by seeking the advice of prominent artists in this field within Sydney in the form of a group discussion. Based on the data from the group discussion, agreements and some pedagogical strategies for achieving multi-stylistic fluency on saxophone have been charted out. I have then unpacked these strategies in relation to a series of music education studies on the efficacy of modelling and put forth several evidence based lesson plans for more effectively implementing these strategies in one-to-one studio teaching

    Співвідношення прямої мови та слів автора в художній німецькомовній прозі

    Get PDF
    Стилістична картина художнього твору, а також стилістичний потенціал прямої мови багато в чому залежать від того, у якому кількісному та структурному співвідношенні перебувають мова оповідача і мова персонажів. При цитуванні документа, використовуйте посилання http://essuir.sumdu.edu.ua/handle/123456789/1773

    A broader role for AmyR in Aspergillus niger: regulation of the utilisation of d-glucose or d-galactose containing oligo- and polysaccharides

    Get PDF
    AmyR is commonly considered a regulator of starch degradation whose activity is induced by the presence of maltose, the disaccharide building block of starch. In this study, we demonstrate that the role of AmyR extends beyond starch degradation. Enzyme activity assays, genes expression analysis and growth profiling on d-glucose- and d-galactose-containing oligo- and polysaccharides showed that AmyR regulates the expression of some of the Aspergillus niger genes encoding α- and β-glucosidases, α- and β- galactosidases, as well as genes encoding α-amlyases and glucoamylases. In addition, we provide evidence that d-glucose or a metabolic product thereof may be the inducer of the AmyR system in A. niger and not maltose, as is commonly assumed

    In silico Analysis of 3′-End-Processing Signals in Aspergillus oryzae Using Expressed Sequence Tags and Genomic Sequencing Data

    Get PDF
    To investigate 3′-end-processing signals in Aspergillus oryzae, we created a nucleotide sequence data set of the 3′-untranslated region (3′ UTR) plus 100 nucleotides (nt) sequence downstream of the poly(A) site using A. oryzae expressed sequence tags and genomic sequencing data. This data set comprised 1065 sequences derived from 1042 unique genes. The average 3′ UTR length in A. oryzae was 241 nt, which is greater than that in yeast but similar to that in plants. The 3′ UTR and 100 nt sequence downstream of the poly(A) site is notably U-rich, while the region located 15–30 nt upstream of the poly(A) site is markedly A-rich. The most frequently found hexanucleotide in this A-rich region is AAUGAA, although this sequence accounts for only 6% of all transcripts. These data suggested that A. oryzae has no highly conserved sequence element equivalent to AAUAAA, a mammalian polyadenylation signal. We identified that putative 3′-end-processing signals in A. oryzae, while less well conserved than those in mammals, comprised four sequence elements: the furthest upstream U-rich element, A-rich sequence, cleavage site, and downstream U-rich element flanking the cleavage site. Although these putative 3′-end-processing signals are similar to those in yeast and plants, some notable differences exist between them

    Analysis of Expressed Sequence Tags from the Fungus Aspergillus oryzae Cultured Under Different Conditions

    Get PDF
    We performed random sequencing of cDNAs from nine biologically or industrially important cultures of the industrially valuable fungus Aspergillus oryzae to obtain expressed sequence tags (ESTs). Consequently, 21 446 raw ESTs were accumulated and subsequently assembled to 7589 non-redundant consensus sequences (contigs). Among all contigs, 5491 (72.4%) were derived from only a particular culture. These included 4735 (62.4%) singletons, i.e. lone ESTs overlapping with no others. These data showed that consideration of culture grown under various conditions as cDNA sources enabled efficient collection of ESTs. BLAST searches against the public databases showed that 2953 (38.9%) of the EST contigs showed significant similarities to deposited sequences with known functions, 793 (10.5%) were similar to hypothetical proteins, and the remaining 3843 (50.6%) showed no significant similarity to sequences in the databases. Culture-specific contigs were extracted on the basis of the EST frequency normalized by the total number for each culture condition. In addition, contig sequences were compared with sequence sets in eukaryotic orthologous groups (KOGs), and classified into the KOG functional categories

    Effects of a defective ERAD pathway on growth and heterologous protein production in Aspergillus niger

    Get PDF
    Endoplasmic reticulum associated degradation (ERAD) is a conserved mechanism to remove misfolded proteins from the ER by targeting them to the proteasome for degradation. To assess the role of ERAD in filamentous fungi, we have examined the consequences of disrupting putative ERAD components in the filamentous fungus Aspergillus niger. Deletion of derA, doaA, hrdC, mifA, or mnsA in A. niger yields viable strains, and with the exception of doaA, no significant growth phenotype is observed when compared to the parental strain. The gene deletion mutants were also made in A. niger strains containing single- or multicopies of a glucoamylase–glucuronidase (GlaGus) gene fusion. The induction of the unfolded protein response (UPR) target genes (bipA and pdiA) was dependent on the copy number of the heterologous gene and the ERAD gene deleted. The highest induction of UPR target genes was observed in ERAD mutants containing multiple copies of the GlaGus gene. Western blot analysis revealed that deletion of the derA gene in the multicopy GlaGus overexpressing strain resulted in a 6-fold increase in the intracellular amount of GlaGus protein detected. Our results suggest that impairing some components of the ERAD pathway in combination with high expression levels of the heterologous protein results in higher intracellular protein levels, indicating a delay in protein degradation

    Fungal Enzymes and Yeasts for Conversion of Plant Biomass to Bioenergy and High-Value Products

    Get PDF
    Fungi and fungal enzymes play important roles in the new bioeconomy. Enzymes from filamentous fungi can unlock the potential of recalcitrant lignocellulose structures of plant cell walls as a new resource, and fungi such as yeast can produce bioethanol from the sugars released after enzyme treatment. Such processes reflect inherent characteristics of the fungal way of life, namely, that fungi as heterotrophic organisms must break down complex carbon structures of organic materials to satisfy their need for carbon and nitrogen for growth and reproduction. This chapter describes major steps in the conversion of plant biomass to value-added products. These products provide a basis for substituting fossil-derived fuels, chemicals, and materials, as well as unlocking the biomass potential of the agricultural harvest to yield more food and feed. This article focuses on the mycological basis for the fungal contribution to biorefinery processes, which are instrumental for improved resource efficiency and central to the new bioeconomy. Which types of processes, inherent to fungal physiology and activities in nature, are exploited in the new industrial processes? Which families of the fungal kingdom and which types of fungal habitats and ecological specializations are hot spots for fungal biomass conversion? How can the best fungal enzymes be found and optimized for industrial use? How can they be produced most efficiently-in fungal expression hosts? How have industrial biotechnology and biomass conversion research contributed to mycology and environmental research? Future perspectives and approaches are listed, highlighting the importance of fungi in development of the bioeconomy
    corecore