1,253 research outputs found

    MultiTest V.1.2, a program to binomially combine independent tests and performance comparison with other related methods on proportional data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Combining multiple independent tests, when all test the same hypothesis and in the same direction, has been the subject of several approaches. Besides the inappropriate (in this case) Bonferroni procedure, the Fisher's method has been widely used, in particular in population genetics. This last method has nevertheless been challenged by the SGM (symmetry around the geometric mean) and Stouffer's <it>Z</it>-transformed methods that are less sensitive to asymmetry and deviations from uniformity of the distribution of the partial <it>P</it>-values. Performances of these different procedures were never compared on proportional data such as those currently used in population genetics.</p> <p>Results</p> <p>We present new software that implements a more recent method, the generalised binomial procedure, which tests for the deviation of the observed proportion of <it>P</it>-values lying under a chosen threshold from the expected proportion of such <it>P</it>-values under the null hypothesis. The respective performances of all available procedures were evaluated using simulated data under the null hypothesis with standard <it>P</it>-values distribution (differentiation tests). All procedures more or less behaved consistently with ~5% significant tests at <it>α </it>= 0.05. Then, linkage disequilibrium tests with increasing signal strength (rate of clonal reproduction), known to generate highly non-standard <it>P</it>-value distributions are undertaken and finally real population genetics data are analysed. In these cases, all procedures appear, more or less equally, very conservative, though SGM seems slightly more conservative.</p> <p>Conclusion</p> <p>Based on our results and those discussed in the literature we conclude that the generalised binomial and Stouffer's <it>Z </it>procedures should be preferred and <it>Z </it>when the number of tests is very small. The more conservative SGM might still be appropriate for meta-analyses when a strong publication bias in favour of significant results is expected to inflate type 2 error.</p

    Genotyping-by-Sequencing and Ecological Niche Modeling Illuminate Phylogeography, Admixture, and Pleistocene Range Dynamics in Quaking Aspen (Populus Tremuloides)

    Get PDF
    Populus tremuloides is the widest‐ranging tree species in North America and an ecologically important component of mesic forest ecosystems displaced by the Pleistocene glaciations. Using phylogeographic analyses of genome‐wide SNPs (34,796 SNPs, 183 individuals) and ecological niche modeling, we inferred population structure, ploidy levels, admixture, and Pleistocene range dynamics of P. tremuloides, and tested several historical biogeographical hypotheses. We found three genetic lineages located mainly in coastal–Cascades (cluster 1), east‐slope Cascades–Sierra Nevadas–Northern Rockies (cluster 2), and U.S. Rocky Mountains through southern Canadian (cluster 3) regions of the P. tremuloides range, with tree graph relationships of the form ((cluster 1, cluster 2), cluster 3). Populations consisted mainly of diploids (86%) but also small numbers of triploids (12%) and tetraploids (1%), and ploidy did not adversely affect our genetic inferences. The main vector of admixture was from cluster 3 into cluster 2, with the admixture zone trending northwest through the Rocky Mountains along a recognized phenotypic cline (Utah to Idaho). Clusters 1 and 2 provided strong support for the “stable‐edge hypothesis” that unglaciated southwestern populations persisted in situ since the last glaciation. By contrast, despite a lack of clinal genetic variation, cluster 3 exhibited “trailing‐edge” dynamics from niche suitability predictions signifying complete northward postglacial expansion. Results were also consistent with the “inland dispersal hypothesis” predicting postglacial assembly of Pacific Northwestern forest ecosystems, but rejected the hypothesis that Pacific‐coastal populations were colonized during outburst flooding from glacial Lake Missoula. Overall, congruent patterns between our phylogeographic and ecological niche modeling results and fossil pollen data demonstrate complex mixtures of stable‐edge, refugial locations, and postglacial expansion within P. tremuloides. These findings confirm and refine previous genetic studies, while strongly supporting a distinct Pacific‐coastal genetic lineage of quaking aspen

    Reproductive Isolation in a Threespine Stickleback Hybrid Zone

    Get PDF
    In many estuarine sites, morphological and genetic differences between anadromous and freshwater threespine sticklebacks are maintained despite breeding in sympatry. Here, we investigate the maintenance of this morphological divergence in a natural hybrid zone in the River Tyne, Scotland. We provide a morphological description of the hybrid zone, and using a Bayesian MCMC approach, identified distinct anadromous and freshwater genetic clusters. Anadromous and freshwater sticklebacks breed in spatial and temporal sympatry in the lower reaches of the River Tyne. The frequency of hybrids within these sites (33%) indicates prezygotic isolation is not complete, and suggests that assortative mating is not strong. However, significant heterozygote deficit and cytonuclear disequilibrium in juveniles collected from sympatric sites confirms that barriers to gene flow exist between the morphs in the wild. In addition, we found no evidence of a directional bias in hybridisation, although hybrids with anadromous mothers were more common because anadromous females outnumbered freshwater females within the hybrid zone. We discuss the potential contribution of temporal, spatial, and sexual prezygotic barriers to the observed reproductive isolation as well as postzygotic selection against hybrid zygotes or fry

    p.Ala541Thr variant of MEN1 gene: A non deleterious polymorphism or a pathogenic mutation?

    Get PDF
    Context Multiple Endocrine Neoplasia Type 1 (MEN1) is an autosomal dominant inherited syndrome, related to mutations in the MEN1 gene. Controversial data suggest that the nonsynonymous p.Ala541Thr variant, usually considered as a non-pathogenic polymorphism, may be associated with an increased risk of MEN1-related lesions in carriers. Objective The aim of this study was to evaluate the pathogenic influence of the p.Ala541Thr variant on clinical and functional outcomes. Patients and methods We analysed a series of 55 index patients carrying the p.Ala541Thr variant. Their clinical profile was compared to that of 117 MEN1 patients. The biological impact of the p.Ala541Thr variant on cell growth was additionally investigated on menin-deficient Leydig cell tumour (LCT)10 cells generated from Men1+/Men1− heterozygous knock-out mice, and compared with wild type (WT). Results The mean age at first appearance of endocrine lesions was similar in both p.Ala541Thr carriers and MEN1 patients, but no p.Ala541Thr patient had more than one cardinal MEN1 lesion at initial diagnosis. A second MEN1 lesion was diagnosed in 13% of MEN1 patients and in 7% of p.Ala541Thr carriers in the year following preliminary diagnosis. Functional studies on LCT10 cells showed that overexpression of the p.Ala541Thr variant did not inhibit cell growth, which is in direct contrast to results obtained from investigation of WT menin protein. Conclusion Taken together, these data raise the question of a potential pathogenicity of the p.Ala541Thr missense variant of menin that commonly occurs within the general population. Additional studies are required to investigate whether it may be involved in a low-penetrance MEN1 phenotype

    Multifaceted Population Structure and Reproductive Strategy in Leishmania donovani Complex in One Sudanese Village

    Get PDF
    Leishmania species of the subgenus Leishmania and especially L. donovani are responsible for a large proportion of visceral leishmaniasis cases. The debate on the mode of reproduction and population structure of Leishmania parasites remains opened. It has been suggested that Leishmania parasites could alternate different modes of reproduction, more particularly clonality and frequent recombinations either between related individuals (endogamy) or between unrelated individuals (outcrossing) within strongly isolated subpopulations. To determine whether this assumption is generalized to other species, a population genetics analysis within Leishmania donovani complex strains was conducted within a single village. The results suggest that a mixed-mating reproduction system exists, an important heterogeneity of subsamples and the coexistence of several genetic entities in Sudanese L. donovani. Indeed, results showed significant genetic differentiation between the three taxa (L. donovani, L. infantum and L. archibaldi) and between the human or canine strains of such taxa, suggesting that there may be different imbricated transmission cycles involving either dogs or humans. Results also are in agreement with an almost strict specificity of L. donovani stricto sensu to human hosts. This empirical study demonstrates the complexity of population structure in the genus Leishmania and the need to pursue such kind of analyses at the smallest possible spatio-temporal and ecological scales

    Chloroquine Clinical Failures in P. falciparum Malaria Are Associated with Mutant Pfmdr-1, Not Pfcrt in Madagascar

    Get PDF
    Molecular studies have demonstrated that mutations in the Plasmodium falciparum chloroquine resistance transporter gene (Pfcrt) play a major role in chloroquine resistance, while mutations in P. falciparum multidrug resistance gene (Pfmdr-1) act as modulator. In Madagascar, the high rate of chloroquine treatment failure (44%) appears disconnected from the overall level of in vitro CQ susceptibility (prevalence of CQ-resistant parasites <5%) or Pfcrt mutant isolates (<1%), strongly contrasting with sub-Saharan African countries. Previous studies showed a high frequency of Pfmdr-1 mutant parasites (>60% of isolates), but did not explore their association with P. falciparum chloroquine resistance. To document the association of Pfmdr-1 alleles with chloroquine resistance in Madagascar, 249 P. falciparum samples collected from patients enrolled in a chloroquine in vivo efficacy study were genotyped in Pfcrt/Pfmdr-1 genes as well as the estimation of the Pfmdr-1 copy number. Except 2 isolates, all samples displayed a wild-type Pfcrt allele without Pfmdr-1 amplification. Chloroquine treatment failures were significantly associated with Pfmdr-1 86Y mutant codon (OR = 4.6). The cumulative incidence of recurrence of patients carrying the Pfmdr-1 86Y mutation at day 0 (21 days) was shorter than patients carrying Pfmdr-1 86N wild type codon (28 days). In an independent set of 90 selected isolates, in vitro susceptibility to chloroquine was not associated with Pfmdr-1 polymorphisms. Analysis of two microsatellites flanking Pfmdr-1 allele showed that mutations occurred on multiple genetic backgrounds. In Madagascar, Pfmdr-1 polymorphism is associated with late chloroquine clinical failures and unrelated with in vitro susceptibility or Pfcrt genotype. These results highlight the limits of the current in vitro tests routinely used to monitor CQ drug resistance in this unique context. Gaining insight about the mechanisms that regulate polymorphism in Pfmdr1 remains important, particularly regarding the evolution and spread of Pfmdr-1 alleles in P. falciparum populations under changing drug pressure which may have important consequences in terms of antimalarial use management

    Population Genetics of Trypanosoma evansi from Camel in the Sudan

    Get PDF
    Genetic variation of microsatellite loci is a widely used method for the analysis of population genetic structure of microorganisms. We have investigated genetic variation at 15 microsatellite loci of T. evansi isolated from camels in Sudan and Kenya to evaluate the genetic information partitioned within and between individuals and between sites. We detected a strong signal of isolation by distance across the area sampled. The results also indicate that either, and as expected, T. evansi is purely clonal and structured in small units at very local scales and that there are numerous allelic dropouts in the data, or that this species often sexually recombines without the need of the “normal” definitive host, the tsetse fly or as the recurrent immigration from sexually recombined T. brucei brucei. Though the first hypothesis is the most likely, discriminating between these two incompatible hypotheses will require further studies at much localized scales

    Genetic characterisation of farmed rainbow trout in Norway: intra- and inter-strain variation reveals potential for identification of escapees

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The rainbow trout (<it>Oncorhynchus mykiss</it>) is one of the most important aquaculture species in the world, and Norway is one of the largest producers. The present study was initiated in response to a request from the Norwegian police authority to identify the farm of origin for 35 escaped rainbow trout captured in a fjord. Eleven samples, each consisting of approximately 47 fish, were collected from the three farms operating in the fjord where the escapees were captured. In order to gain a better general understanding of the genetic structure of rainbow trout strains used in Norwegian aquaculture, seven samples (47 fish per sample) were collected from six farms located outside the region where the escapees were captured. All samples, including the escapees, were genotyped with 12 microsatellite loci.</p> <p>Results</p> <p>All samples displayed considerable genetic variability at all loci (mean number of alleles per locus per sample ranged from 5.4–8.6). Variable degrees of genetic differentiation were observed among the samples, with pair-wise <it>F</it><sub>ST </sub>values ranging from 0–0.127. Self-assignment tests conducted among the samples collected from farms outside the fjord where the escapees were observed gave an overall correct assignment of 82.5%, demonstrating potential for genetic identification of escapees. In the "real life" assignment of the 35 captured escapees, all were excluded from two of the samples included as controls in the analysis, and 26 were excluded from the third control sample. In contrast, only 1 of the escapees was excluded from the 11 pooled samples collected on the 3 farms operating in the fjord.</p> <p>Conclusion</p> <p>Considerable genetic variation exists within and among rainbow trout strains farmed in Norway. Together with modern statistical methods, this will provide commercial operators with a tool to monitor breeding and fish movements, and management authorities with the ability to identify the source of escapees. The data generated in this study were used by the Norwegian police to initiate an investigation of the company operating the three farms in the fjord where escapees were observed.</p

    Functioning of the dimeric GABA(B) receptor extracellular domain revealed by glycan wedge scanning

    Full text link
    The G-protein-coupled receptor (GPCR) activated by the neurotransmitter GABA is made up of two subunits, GABA(B1) and GABA(B2). GABA(B1) binds agonists, whereas GABA(B2) is required for trafficking GABA(B1) to the cell surface, increasing agonist affinity to GABA(B1), and activating associated G proteins. These subunits each comprise two domains, a Venus flytrap domain (VFT) and a heptahelical transmembrane domain (7TM). How agonist binding to the GABA(B1) VFT leads to GABA(B2) 7TM activation remains unknown. Here, we used a glycan wedge scanning approach to investigate how the GABA(B) VFT dimer controls receptor activity. We first identified the dimerization interface using a bioinformatics approach and then showed that introducing an N-glycan at this interface prevents the association of the two subunits and abolishes all activities of GABA(B2), including agonist activation of the G protein. We also identified a second region in the VFT where insertion of an N-glycan does not prevent dimerization, but blocks agonist activation of the receptor. These data provide new insight into the function of this prototypical GPCR and demonstrate that a change in the dimerization interface is required for receptor activation

    Fine-Scale Genetic Structure Arises during Range Expansion of an Invasive Gecko

    Get PDF
    Processes of range expansion are increasingly important in light of current concerns about invasive species and range shifts due to climate change. Theoretical studies suggest that genetic structuring may occur during range expansion. Ephemeral genetic structure can have important evolutionary implications, such as propagating genetic changes along the wave front of expansion, yet few studies have shown evidence of such structure. We tested the hypothesis that genetic structure arises during range expansion in Hemidactylus mabouia, a nocturnal African gecko recently introduced to Florida, USA. Twelve highly variable microsatellite loci were used to screen 418 individuals collected from 43 locations from four sampling sites across Florida, representing a gradient from earlier (∼1990s) to very recent colonization. We found earlier colonized locations had little detectable genetic structure and higher allelic richness than more recently colonized locations. Genetic structuring was pronounced among locations at spatial scales of tens to hundreds of meters near the leading edge of range expansion. Despite the rapid pace of range expansion in this introduced gecko, dispersal is limited among many suitable habitat patches. Fine-scale genetic structure is likely the result of founder effects during colonization of suitable habitat patches. It may be obscured over time and by scale-dependent modes of dispersal. Further studies are needed to determine if such genetic structure affects adaptation and trait evolution in range expansions and range shifts
    corecore