24 research outputs found

    Decreased microbial co-occurrence network stability and SCFA receptor level correlates with obesity in African-origin women.

    Get PDF
    We compared the gut microbial populations in 100 women, from rural Ghana and urban US [50% lean (BMI < 25 kg/m2) and 50% obese (BMI ≥ 30 kg/m2)] to examine the ecological co-occurrence network topology of the gut microbiota as well as the relationship of short chain fatty acids (SCFAs) with obesity. Ghanaians consumed significantly more dietary fiber, had greater microbial alpha-diversity, different beta-diversity, and had a greater concentration of total fecal SCFAs (p-value < 0.002). Lean Ghanaians had significantly greater network density, connectivity and stability than either obese Ghanaians, or lean and obese US participants (false discovery rate (FDR) corrected p-value ≤ 0.01). Bacteroides uniformis was significantly more abundant in lean women, irrespective of country (FDR corrected p < 0.001), while lean Ghanaians had a significantly greater proportion of Ruminococcus callidus, Prevotella copri, and Escherichia coli, and smaller proportions of Lachnospiraceae, Bacteroides and Parabacteroides. Lean Ghanaians had a significantly greater abundance of predicted microbial genes that catalyzed the production of butyric acid via the fermentation of pyruvate or branched amino-acids, while obese Ghanaians and US women (irrespective of BMI) had a significantly greater abundance of predicted microbial genes that encoded for enzymes associated with the fermentation of amino-acids such as alanine, aspartate, lysine and glutamate. Similar to lean Ghanaian women, mice humanized with stool from the lean Ghanaian participant had a significantly lower abundance of family Lachnospiraceae and genus Bacteroides and Parabacteroides, and were resistant to obesity following 6-weeks of high fat feeding (p-value < 0.01). Obesity-resistant mice also showed increased intestinal transcriptional expression of the free fatty acid (Ffa) receptor Ffa2, in spite of similar fecal SCFAs concentrations. We demonstrate that the association between obesity resistance and increased predicted ecological connectivity and stability of the lean Ghanaian microbiota, as well as increased local SCFA receptor level, provides evidence of the importance of robust gut ecologic network in obesity

    Open Sequence Initiative: a part submission standard to complement modern DNA assembly techniques

    Get PDF
    The discipline of synthetic biology emphasizes the application of engineering principles such as standardization, abstraction, modularity, and rational design to complex biological systems. The archetypical example of such standardization is BioBrick RFC[10], introduced in 2003 by Tom Knight at MIT. BioBricks are stored on a standard plasmid, pSB1C3, which contains prefix and suffix sequences flanking the DNA sequence specifying a biological part. The prefix and suffix sequences contain two pairs of 6 base-pair (bp) restriction enzyme sites (EcoRI+XbaI and SpeI+PstI), which can be used for both part assembly and quality control. BioBricks are intended to be well- characterized biological parts, such as genes or promoters, that function in a predictable fashion and can be readily combined to make complex systems. The rules of the RFC[10] BioBrick assembly method require that none of the restriction sites used in the prefix and suffix be present in the parts themselves. This requirement can be an onerous imposition for iGEM teams developing large, novel parts, such as genes or entire operons that are obtained by amplifying DNA sequences from environmental samples or microorganisms. While iGEM teams may use methods such as site-directed mutagenesis to remove illegal restriction sites from a part's sequence, it is certainly possible that this mutation will alter the functionality of the part – a very undesirable outcome. In addition, the mutagenesis of illegal restriction sites is an unnecessary burden on teams, given the limited time and resources available to teams during each year’s iGEM competition. Efforts spent mutagenizing sites would be better spent characterizing and improving parts. This RFC proposes an alternative submission standard to eliminate these problems

    American Gut: an Open Platform for Citizen Science Microbiome Research

    Get PDF
    McDonald D, Hyde E, Debelius JW, et al. American Gut: an Open Platform for Citizen Science Microbiome Research. mSystems. 2018;3(3):e00031-18

    Data from: Photoautotrophic symbiont and geography are major factors affecting highly structured and diverse bacterial communities in the lichen microbiome

    No full text
    Although common knowledge dictates that the lichen thallus is formed solely by a fungus (mycobiont) that develops a symbiotic relationship with an alga and/or cyanobacterium (photobiont), the non-photoautotrophic bacteria found in lichen microbiomes are increasingly regarded as integral components of lichen thalli. For this study, comparative analyses were conducted on lichen-associated bacterial communities to test for effects of photobiont-types (i.e., green algal vs. cyanobacterial), mycobiont-types, and large-scale spatial distances (from tropical to arctic latitudes). Amplicons of the 16S (SSU) rRNA gene were examined using both Sanger sequencing of cloned fragments and barcoded pyrosequencing. Rhizobiales is typically the most abundant and taxonomically diverse order in lichen microbiomes; however, overall bacterial diversity in lichens is shown to be much higher than previously reported. Members of Acidobacteriaceae, Acetobacteraceae, Brucellaceae, and sequence group LAR1 are the most commonly found groups across the phylogenetically and geographically broad array of lichens examined here. Major bacterial community trends are significantly correlated with differences in large-scale geography, photobiont-type, and mycobiont-type. The lichen as a microcosm represents a structured, unique microbial habitat with greater ecological complexity and bacterial diversity than previously appreciated and can serve as a model system for studying larger ecological and evolutionary principles

    Lichen-Associated Bacterial 16S Sequences & Analysis Files

    No full text
    The archive contains 5 major elements: [Clon16SFinal.fasta - A fasta-formatted file containing all cloned sequences from the order Rhizobiales generated as part of this study] [FIGS1.pdf - An image of a phylogeny of all cloned sequences from the order Rhizobiales generated as part of this study (the methodology for generating the figure is outlined in the associated publication)] [HodkinsonLichen16S_454_raw_data_archive - A directory containing archived fna + qual files of raw sequence data with associated oligos files (used for processing with Mothur 1.15)] [454_clean - A directory containing the cleaned sequence data set (in the form of a .fasta and a .groups file) after quality checks performed using Mothur 1.15] [Supporting_Information - A directory containing all of the supplementary files referenced in the text of the associated publication along with instructions for using the various scripts written for this study, all found within a system of descriptively-titled sub-directories
    corecore