1,650 research outputs found

    Measures to increase airfield capacity by changing aircraft runway occupancy characteristics

    Get PDF
    Airfield capacity and aircraft runway occupancy characteristics were studied. Factors that caused runway congestion and airfield crowding were identified. Several innovations designed to alleviate the congestion are discussed. Integrated landing management, the concept that the operation of the final approach and runway should be considered in concert, was identified as underlying all of the innovations

    Acceleration of Solar Wind Ions by Nearby Interplanetary Shocks: Comparison of Monte Carlo Simulations with Ulysses Observations

    Get PDF
    The most stringent test of theoretical models of the first-order Fermi mechanism at collisionless astrophysical shocks is a comparison of the theoretical predictions with observational data on particle populations. Such comparisons have yielded good agreement between observations at the quasi-parallel portion of the Earth's bow shock and three theoretical approaches, including Monte Carlo kinetic simulations. This paper extends such model testing to the realm of oblique interplanetary shocks: here observations of proton and alpha particle distributions made by the SWICS ion mass spectrometer on Ulysses at nearby interplanetary shocks are compared with test particle Monte Carlo simulation predictions of accelerated populations. The plasma parameters used in the simulation are obtained from measurements of solar wind particles and the magnetic field upstream of individual shocks. Good agreement between downstream spectral measurements and the simulation predictions are obtained for two shocks by allowing the the ratio of the mean-free scattering length to the ionic gyroradius, to vary in an optimization of the fit to the data. Generally small values of this ratio are obtained, corresponding to the case of strong scattering. The acceleration process appears to be roughly independent of the mass or charge of the species.Comment: 26 pages, 6 figures, AASTeX format, to appear in the Astrophysical Journal, February 20, 199

    Solar cycle variations of the energetic H/He intensity ratio at high heliolatitudes and in the ecliptic plane

    No full text
    International audienceWe study the variability of the heliospheric energetic proton-to-helium abundance ratios during different phases of the solar cycle. We use energetic particle, solar wind, and magnetic field data from the Ulysses, ACE and IMP-8 spacecraft to compare the H/He intensity ratio at high heliographic latitudes and in the ecliptic plane. During the first out-of-ecliptic excursion of Ulysses (1992?1996), the HI-SCALE instrument measured corotating energetic particle intensity enhancements characterized by low values ( 10) of the 0.5?1.0 MeV nucleon-1 H/He intensity ratio. During the second out-of-ecliptic excursion of Ulysses (1999?2002), the more frequent occurrence of solar energetic particle events resulted in almost continuously high ( 20) values of the H/He ratio, even at the highest heliolatitudes reached by Ulysses. Comparison with in-ecliptic measurements from an identical instrument on the ACE spacecraft showed similar H/He values at ACE and Ulysses, suggesting a remarkable uniformity of energetic particle intensities in the solar maximum heliosphere at high heliolatitudes and in the ecliptic plane. In-ecliptic observations of the H/He intensity ratio from the IMP-8 spacecraft show variations between solar maximum and solar minimum similar to those observed by Ulysses at high heliographic latitudes. We suggest that the variation of the H/He intensity ratio throughout the solar cycle is due to the different level of transient solar activity, as well as the different structure and duration that corotating solar wind structures have under solar maximum and solar minimum conditions. During solar minimum, the interactions between the two different types of solar wind streams (slow vs. fast) are strong and long-lasting, allowing for a continuous and efficient acceleration of interstellar pickup He +. During solar maximum, transient events of solar origin (characterized by high values of the H/He ratio) are able to globally fill the heliosphere. In addition, during solar maximum, the lack of strong recurrent high-speed solar wind streams, together with the dynamic character of the Sun, lead to weak and short-lived solar wind stream interactions. This results in a less efficient acceleration of pickup He +, and thus a higher value of the H/He intensity ratio

    Coronal mass ejections, magnetic clouds, and relativistic magnetospheric electron events: ISTP

    Get PDF
    The role of high-speed solar wind streams in driving relativistic electron acceleration within the Earth\u27s magnetosphere during solar activity minimum conditions has been well documented. The rising phase of the new solar activity cycle (cycle 23) commenced in 1996, and there have recently been a number of coronal mass ejections (CMEs) and related “magnetic clouds” at 1 AU. As these CME/cloud systems interact with the Earth\u27s magnetosphere, some events produce substantial enhancements in the magnetospheric energetic particle population while others do not. This paper compares and contrasts relativistic electron signatures observed by the POLAR, SAMPEX, Highly Elliptical Orbit, and geostationary orbit spacecraft during two magnetic cloud events: May 27–29, 1996, and January 10–11, 1997. Sequences were observed in each case in which the interplanetary magnetic field was first strongly southward and then rotated northward. In both cases, there were large solar wind density enhancements toward the end of the cloud passage at 1 AU. Strong energetic electron acceleration was observed in the January event, but not in the May event. The relative geoeffectiveness for these two cases is assessed, and it is concluded that large induced electric fields (∂B/∂t) caused in situ acceleration of electrons throughout the outer radiation zone during the January 1997 event

    Compilation of extended recursion in call-by-value functional languages

    Get PDF
    This paper formalizes and proves correct a compilation scheme for mutually-recursive definitions in call-by-value functional languages. This scheme supports a wider range of recursive definitions than previous methods. We formalize our technique as a translation scheme to a lambda-calculus featuring in-place update of memory blocks, and prove the translation to be correct.Comment: 62 pages, uses pi

    A statistical sub-sampling tool for extracting vegetation community and diversity information from pollen assemblage data

    Get PDF
    AbstractPollen assemblages are used extensively across the globe, providing information on various characteristics of the vegetation communities that originally produced them, and how these vary temporally and spatially. However, anticipating a statistically based robust pollen count size, sufficient to characterise a pollen assemblage is difficult; particularly with regard to highly diverse pollen assemblages. To facilitate extraction of ecologically meaningful information from pollen assemblage data, a two part statistical sub-sampling tool has been developed (Models 1 and 2), which determines the pollen count size required to capture major vegetation communities of varying palynological richness and evenness, and the count size required to find the next not yet seen (rare) pollen taxa. The sub-sampling tool presented here facilitates the rapid assessment of individual pollen samples (initial information input of 100 pollen grains) and can, therefore, on a sample by sample basis achieve maximum effectiveness and efficiency. The sub-sampling tool is tested on fossil pollen data from five tropical sites.Results demonstrate that Model 1 predicts count sizes relating to palynological richness and evenness consistently. To characterise major vegetation community components model 1 indicates that, for samples with a lower richness and higher evenness lower count sizes than are considered standard can be used (<300, e.g. 122); however, for samples of high richness and low evenness, higher count sizes are required (>300, e.g. 870). Model 2 calculates the additional number of pollen grains needed to be counted to detect the next not yet seen pollen taxa, outputs were strongly related to input data count size as well as richness and evenness characteristics. We conclude that, given the temporal and spatial variations in vegetation communities and also pollen assemblages, pollen count sizes should be determined for each individual sample to ensure that effective and efficient data are generated and that detection of rare taxa is checked iteratively throughout the counting process
    corecore