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Pollen assemblages are used extensively across the globe, providing information on various characteristics of the
vegetation communities that originally produced them, and how these vary temporally and spatially. However,
anticipating a statistically based robust pollen count size, sufficient to characterise a pollen assemblage is difficult;
particularly with regard to highly diverse pollen assemblages. To facilitate extraction of ecologically meaningful
information from pollen assemblage data, a two part statistical sub-sampling tool has been developed (Models 1
and 2), which determines the pollen count size required to capture major vegetation communities of varying
palynological richness and evenness, and the count size required to find the next not yet seen (rare) pollen
taxa. The sub-sampling tool presented here facilitates the rapid assessment of individual pollen samples (initial
information input of 100 pollen grains) and can, therefore, on a sample by sample basis achievemaximum effec-
tiveness and efficiency. The sub-sampling tool is tested on fossil pollen data from five tropical sites.
Results demonstrate that Model 1 predicts count sizes relating to palynological richness and evenness consistently.
To characterisemajor vegetation community componentsmodel 1 indicates that, for samples with a lower richness
andhigher evenness lower count sizes than are considered standard can beused (b300, e.g. 122); however, for sam-
ples of high richness and low evenness, higher count sizes are required (N300, e.g. 870). Model 2 calculates the ad-
ditional number of pollen grains needed to be counted to detect the next not yet seen pollen taxa, outputs were
strongly related to input data count size as well as richness and evenness characteristics. We conclude that, given
the temporal and spatial variations in vegetation communities and also pollen assemblages, pollen count sizes
should be determined for each individual sample to ensure that effective and efficient data are generated and that
detection of rare taxa is checked iteratively throughout the counting process.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/).
1. Introduction

Fossil pollen contained within natural sedimentary records can be
used to reconstruct past vegetation communities and assess how they
have changed through time. The type of ecological information extracted
from fossil pollen records includes: i) identifying large-scale shifts
between biomes (defined here as a large array of flora and fauna within
one major habitat), e.g. shifts between woodland and grassland (Rull
et al., 2005), or shifts between deciduous forest and boreal forest
(Fréchette and de Vernal, 2013), ii) determining first arrival or introduc-
tion of species (Hooghiemstra and Cleef, 1995; Van der Knaap et al.,
2012), and iii) characterising shifts in criteria important for conservation,
e.g. assemblage richness or the discovery of rare taxa (Bush and
. This is an open access article under
Colinvaux, 1988). Furthermore, examination of modern pollen–vegeta-
tion relationships can be used to address biogeographic and ecological
questions (Jantz et al., 2014). Understanding the nature and dynamics
of vegetation communities through time and space is essential in order
to anticipate the likely response of modern vegetation to human activity,
and on-going/projected climate changes (Jackson, 2012).

To be confident that the inferences being drawn about vegetation
communities from the pollen assemblage data are valid, it is necessary
to consider several key factors including: i) pollen production (Bush,
1995; Gosling et al., 2005), ii) pollen transport (Gosling et al., 2009;
van der Knaap, 2009), iii) pollen preservation (Havinga, 1964, 1984),
iv) distribution of pollen grains on the slide (Brooks and Thomas,
1967; Holt et al., 2011), v) taxonomic classification of pollen types and
the relationship with the taxonomic classification of the parent
vegetation (Odgaard, 1999), and vi) efficiency of sampling (Rull, 1987;
Moore et al., 1991). Furthermore, consideration of other proxies (e.g.
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Fig. 1. Ecological descriptors of a fossil pollen assemblage from the tropical eastern Andean
flank (Mera Tigre East) as a function of increasing sample size (increments of 100 grains).
A) Diversity: total sub-sample richness (black line) and evenness (grey line). B) Assemblage
composition: percentage cumulative taxa abundance for ten selected taxa.
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macrofossils) is also important, as these can provide further insight into
the vegetation communities (Birks and Birks, 2006). In this paper we
focus on sampling efficiency and present a new methodology for sub-
sampling (bymeans of pollen counting) pollen assemblages. Themeth-
od presented allows the researcher to: i) tailor their sampling strategy
to the scientific question being asked, and ii) account for variation in
the pollen assemblages throughout time and space. This method en-
sures that if a vegetation change occurs, a statistically robust count
size appropriate for its detection will be achieved.

2. Considerations for pollen counting

To establish a robust link between fossil pollen data and past vegeta-
tion communities, it is necessary for the researcher to consider the
question(s) posed and balance the investigator effort required (time
consumed), against time available. Nextwe consider two key factors re-
lated to effective and efficient pollen counting: i) determining an appro-
priate pollen count size, and ii) the application of the determined pollen
count size to a study site.

2.1. Determining pollen count size

Research based on percentage rarefaction curves of pollen assem-
blages from temperate regions indicates that pollen count sizes (target
amount of pollen grains to count within a single sample) between 300
and 500 grains (excluding aquatic taxa) are often enough, dependent
on the question being investigated (Birks and Birks, 1980). However,
larger count sizes (N500 grains) have also been recommended as a
more suitable count size to characterise past vegetation composition
(Moore et al., 1991; Bennett andWillis, 2001).Within more floristically
diverse tropical regions, studies establishing an effective pollen count
size are scarce (Rull, 1987); although pollen counts of N500 grains
were found to be sufficient to characterise themajor components of pol-
len assemblages in a study ofmodern pollen–vegetation relationships in
Neotropical forests and savannahs (Gosling, 2004; Gosling et al., 2005).

Most investigations into past vegetation change are concerned with
large scale characterisation of the vegetation and, therefore, pollen sums
of N300 grains are widely used (following Birks and Birks, 1980); i.e.
74% percent of the top 50 most cited papers returned within Scopus
(http://www.scopus.com) for the search term ‘Quaternary fossil pollen’
indicated that count sizes of at least 300 were targeted (25th October
2013). However, variance in either the richness (amount of taxa within
an ecosystem), or evenness (representation of taxa within an ecosys-
tem) of how the parent vegetation is expressed in the pollen assem-
blage could result in pollen sums of N300 being insufficient or in
excess. The potential for variance in richness and evenness to hinder
pollen counting accuracy is of particular concern when trying to recon-
struct past vegetation from the tropics, mainly due to the high floristic
diversity within these ecosystems. Consequently, tropical vegetation is
more difficult to reconstruct (Odgaard, 2001). For example, in a fossil
pollen sub-sample from the tropical eastern Andean flank, diversity
characteristics (Fig. 1A) and relative taxon abundances (Fig. 1B) are
shown to vary markedly dependent on count size.

2.2. Applying pollen count sizes to a study site

Currently, standard research practice is to apply an identical count
size target for an entire study i.e. throughout a sedimentary sequence
for fossil pollen, or across a series of vegetation plots for modern pollen
studies. In a setting where the richness and/or evenness characteristics
of the various vegetation communities being examined are roughly sim-
ilar, the application of a uniform count size is more applicable, e.g. com-
parison of two types of temperate forest. However, if the time period, or
area, being studied covers a shift in richness or evenness characteristics
of the parent vegetation community, the use of a single count size could
result in false inferences due to under or over sub-sampling (hereafter
interchangeable sample/sub-sampling), and although over sampling is
not a statistical issue, it doesmeanwasted investigator effort. For exam-
ple, to characterise themajor components of a savannahwith low paly-
nological richness, a lower pollen count size would be required in
comparison to a palynologically diverse tropical forest (high richness).
Richness changes could occur within an individual sedimentary se-
quence or study region, making it important to identify a count size ap-
propriate for each sample. Consequently, a methodology is required to
determine appropriate pollen count sizes on a sample-by-sample basis.

2.3. Improving statistical sub-sampling of pollen assemblages

In this paper we present a statistical methodology (sub-sampling
tool), which allows preliminary pollen count data to be used to assess
the ideal pollen count size required to address three ecological ques-
tions: i) what are the major components of the parent vegetation com-
munity (biome), ii) what is the richness of the sample (including rare
taxa), and iii) when is it probable that the next not yet seen pollen
grain has been sampled? The statistical model presented takes into ac-
count the richness and evenness of a sample through the input of an ini-
tial pollen count of 100 pollen grains (see Section 5.1). To test the
robustness of the model, extended fossil pollen count data from three
tropical regions are compared against the model output: i) high

http://www.scopus.com
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elevation central Andes (Bolivia and Peru), ii) mid-elevation eastern An-
dean flank (Ecuador), and iii) lowland West Africa (Ghana).

3. Ecological parameters

3.1. Richness

For the purpose of this paper, richness (R) is defined as the amount
of taxa within an ecosystem and it is calculated as the total number of
palynological taxa within a sample. R can only be used as a measure of
palynological richness if the pollen count numbers are standardised,
as such a fixed amount of grains (100 grains — see Section 5.1) is used
to enter data into the statistical model so that R can be calculated.
Rarefaction analysis can be used for standardisation purposes if the
count sizes are different (Birks and Line, 1992).

In general for any given pollen assemblage a parent vegetation
community with a high richness will have a greater number of different
pollen taxa than a vegetation communitywith a low richness. However,
due to the variances in pollen production for each taxon, the pollen
assemblage does not always directly reflect the richness of the parent
vegetation (Bush, 1995; Odgaard, 2001). Some taxa present in the
vegetation can be underrepresented in the pollen assemblage, or even
be absent (e.g. Orchidaceae), and consequently, the vegetation commu-
nity richness may not be fully represented by pollen richness (Odgaard,
1999; Goring et al., 2013). Conversely long-distance transport of pollen
grains into the study site from extra-regional vegetation communities
could result in an artificially elevated palynological richness in compar-
ison to the local parent vegetation community (Gosling et al., 2009).

3.2. Evenness

For the purpose of this paper, evenness (E) describes the distribution
of pollen taxawithin the pollen assemblage. In this sense, a samplewith
a dominant taxon (high number of pollen grains of the same type)
would be considered low evenness, whereas a sample without domi-
nant taxa (pollen grains similarly/equally distributed amongst all
taxa) would represent high evenness (Smith and Wilson, 1996). In a
pollen assemblage, understanding evenness is not always straightfor-
ward as different taxa produce varying amounts of grains and distribute
pollen grains differently, e.g. anemophilous vs. entomophilous taxa
(Sugita, 1994; Bush, 1995; Gosling et al., 2009). The variance in produc-
tion and distribution can occasionally lead to difficulties in linking even-
ness within a pollen assemblage, to that of the parent vegetation.
Nevertheless, the sub-sampling tool uses evenness in the pollen assem-
blage, so this does not affect model performance, i.e. the relationship
between palynological evenness and the parent vegetation evenness
still needs to be considered as usual when interpreting the pollen and
vegetation relationship.

Evenness (E) is calculated using the following formulae (Eqs. (1)–(3)),
where two variables are required: i) richness (R) (defined in Section 3.1)
which is not heavily dependent on evenness, and ii) the Shannon–Wiener
index (H), which is an index used tomeasure biodiversity, and is strongly
influenced by evenness within the pollen assemblage.

Pi ¼
number of grains for an individual taxa

total number of grains for all taxa
ð1Þ

Pi is the proportion of a total sample belonging to the ith taxa (Krebs,
1999), and it is a variable used within the calculation of H.

H ¼ −
XS

i¼1
Pi � ln Pi½ �ð Þ ð2Þ

whereΣ represents the sum, S is the number of taxawithin the sample, i
is a single taxa within the sample, ln represents the natural logarithm,
and Pi is as defined above (Eq. (1)). Eq. (2) must be applied to all taxa
individually and the summation of these calculations used for the
calculation of H for the entire pollen assemblage.

Once R andH have been calculated the following formula can be ap-
plied to produce an E (evenness) value.

E ¼ H
ln Rð Þ ð3Þ

The value of E can vary between 0 (low evenness) and 1 (high
evenness).

4. Methodology

In order to develop and verify a robust statistical methodology for
determining appropriate count sizes for pollen assemblages of varying
richness and evenness, the following steps were applied: i) selection
of study sites with vegetation of varying richness and evenness, ii) gen-
eration of empirical data (pollen preparation, identification and
counting), iii) generation of statistically modelled pollen counts (sub-
sampling tool), and iv) consideration of how to apply count size estima-
tions to address particular ecological questions.

4.1. Study sites

To capture a wide range of evenness and richness values within pol-
len assemblage data, ten samples were analysed from three different
tropical regions: i) high central Andes, ii) eastern Andean flank, and
iii) lowland West Africa. Sites from high (three sites), mid (one site)
and low (one site) elevations were selected for study to provide insight
into a range of tropical vegetation communities. One sample was
analysed for each site, except for the mid elevation site where six sam-
ples were analysed to investigate variance within one region through
time. All samples were obtained from sedimentary sequences (fossil
pollen records).

4.1.1. High elevation, central Andes, Bolivia and Peru, South America
Three high elevation study sites (Lakes Khomer Kotcha Upper,

Challacaba and Pacucha) were used in this study and provide an oppor-
tunity to test the model output against a range of different richness and
evenness values. The sediment cores from all three high elevation sites
were collected using a Colinvaux modified Livingstone corer (Valencia
et al., 2010; Williams et al., 2011a,b).

Khomer Kotcha Upper is a glacier formed lake situated in Bolivia
(17°16.514′S, 65°43.945′W, 4153 m asl [above sea level]). Today the
site has a mean annual temperature (MAT) of 4.5 °C to 7.6 °C and
mean annual precipitation (MAP) of 772 mm. Modern vegetation
present at the region transitions between puna grassland and punean
woodland (Williams et al., 2011a). The sample chosen for this study
from Khomer Kotcha Upper is from the Early Holocene (c. 9360 cal yr
BP [calibrated years before present]).

Challacaba is a freshwater lake located in the Andes of Bolivia
(17°33.257′S, 65°34.024′W, 3400 m asl). The MAT of the site varies
from 7.2 °C to 11.3 °C annually and the precipitation varies seasonally
between 2.6 mm and 114 mm per month. Current vegetation at the
site is a patchwork of grassland, shrub and Polylepis sp. dominated
woodland (Williams et al., 2011b). The sample chosen for this study
from Challacaba is from the Late Holocene (c. 3270 cal yr BP).

Lake Pacucha is located in the Peruvian Andes (13°36.384′S,
73°19.690′W, 3095 m asl). MAT is 13 °C and MAP is b700 mm
(Valencia et al., 2010). Human activity around the lake has resulted
in a shift from native Polylepis sp. woodland to Eucalyptus sp. planta-
tions and crops (mainly potatoes and barley). The sample chosen
for this study from Pacucha is from the Last Glacial Maximum
(c. 22,400 cal yr BP).
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4.1.2. Mid elevation, eastern Andean flank, Ecuador, South America
Mera Tigre East is located on the eastern Andean flank in the Pastaza

province of Ecuador (01°27.546′S, 78°06.199′W, 1117masl). Today, the
Mera region has aMAT of 20.8 °C andMAPof N4800mm(Ferdon, 1950;
Liu and Colinvaux, 1985), and diverse vegetation including different
degrees of human disturbed rainforests. Sediments were recovered
from an 8.49 m vertical section exposed by the down cutting of the
Rio Tigre. The six samples selected for this study are all of Pleistocene
age (younger than 1 Ma due to the presence of Alnus in the pollen as-
semblage (Hooghiemstra, 1984), but beyond the limit of radiocarbon
dating, i.e. N50,000 years old). The six samples from Mera Tigre East
were selected for analysis because they presented an opportunity to
test the model against multiple samples with high palynological diver-
sity (richness).

4.1.3. Low elevation, central Ghana, West Africa
Lake Bosumtwi is located in the lowlands of Ghana, Africa (6°30′ N,

1°25′W, 97 m asl). The MAT is 26 °C and the MAP is 1260 mm
(Shanahan et al., 2008). Prior to the degradation of the natural vegeta-
tion by human settlement and cultivation, the lake was surrounded by
moist semi-deciduous forest (Gill, 1969), with a dominant canopy com-
prised of trees from the Ulmaceae and Sterculiaceae families (Hall and
Swaine, 1981; Beuning et al., 2003). In 2004, 1833 m of sediments
were recovered from Bosumtwi as part of the International Continental
Drilling Program (Koeberl et al., 2007). The sample chosen from
Bosumtwi was from the last glacial period (Miller and Gosling, 2014).
The glacial sample from Bosumtwi was selected for analysis because
of its low palynological richness.

4.2. Pollen preparation and identification

Pollen preparation at all sites followed standard procedure,
including acetolysis and digestions with Hydrochloric acid, Potassium
hydroxide and Hydrofluoric acid (Moore et al., 1991). Samples were
spiked with an exotic marker to: i) allow the calculation of pollen con-
centrations (Stockmarr, 1971;Maher, 1972), and ii) provide a reference
marker for the extended pollen counts. The samples were mounted on
slides using glycerol and pollen was identified from their distinguishing
morphometric features using reference material held at The Open Uni-
versity and Florida Institute of Technology, open access online pollen
databases (Bush and Weng, 2007; Gosling et al., 2013), and published
pollen atlases (Hooghiemstra, 1984; Roubik and Moreno, 1991; Reille,
1995; Colinvaux et al., 1999; Vincens et al., 2007; Gosling et al., 2009).

4.2.1. Extended pollen counts
Extended pollen counts for the sixMera Tigre East samples followed

a protocol designed to assist in the development of the statisticalmodel.
Samples were counted until a total of 300 exotic markers (Lycopodium
sp. spores, batch 124961, Lund University) were reached. Lycopodium
spores were counted in batches of twenty and all terrestrial pollen
grains were counted within the batches. Once a count of 300
Lycopodium spores had been achieved the analysis stopped and the per-
centage abundance for the terrestrial pollen grains was calculated. By
counting to 300 Lycopodium marker spores, roughly 2000 terrestrial
pollen grains were counted for each sample.

Lakes Khomer Kotcha Upper, Challacaba and Bosumtwi were exten-
sively counted until a total of 1000 terrestrial pollen grains had been
reached as suggested by Moore et al. (1991). Lake Pacucha was not
counted extensively, but a ‘standard’ count of 300 pollen grains was
achieved.

4.3. Modelled pollen counts

The statistical model (sub-sampling tool) requires the input of em-
pirical pollen count data for each pollen sub-sample being considered.
The statistical model generates multiple simulations of the possible
permutations for pollen assemblages based on the input data, and
then assesses themost probable count size required to capture the eco-
logical characteristics (assemblage composition and diversity).

The primary aim of the model is to estimate the required count size
that would reliably characterise the major components of the parent
vegetation community (hereafter Model 1). The secondary aim of the
model is to estimate howmanymore pollen grainswould be needed be-
fore a not yet foundpollen typewas detected, i.e. a taxa not already seen
is found (hereafter Model 2). The count size estimates will depend on
the richness, as well as the evenness, of the sample based on the initial
input data. However, it is important to note that the outputs are
modelled probabilities, and that there are many complexities that
mean the translation ofmodelled estimates to ‘realworld’pollen assem-
blages will not be perfect. The purpose of the model is, therefore, to
provide statistically-based support for the researcher to help ensure
the data generated have the best possible chance of addressing the
question(s) posed.

4.3.1. Model methodology
The statistical model (sub-sampling tool) takes empirical pollen as-

semblage input data and runs a simpleMonte Carlo simulation (amethod
involving running a simulation multiple times to assess the likely out-
comes) one hundred times in succession. The multiple model runs
allow the pollen count required to determine the ecological characteris-
tics (assemblage composition and diversity) within a sub-sample to be
estimated. The target amount of empirical pollen count data that should
be examined to capture this can then be calculated.

The model pollen count simulations work by assigning each pollen
grain a random number. For a given distribution of taxa the simulation
then has to determine which taxa corresponds to the chosen random
number. By repeatedly choosing random numbers, the model mimics
the empirical pollen counting process.

In practice, the pollen countmodel procedure is as follows. At the be-
ginning of each run, the relative abundance of each taxon is obtained (pi),
ensuring that the sum of pi is 1. A cumulative amount ri = pi + ri − 1

(sumof all pj for i b j) is determined for each taxon. Eachmodelled pollen
grain is described by obtaining a single random s number between 0 and
1. The taxa index i of this pollen grain is obtained by working out which
cumulative fraction corresponds to the random number, e.g. by testing
for pi b s b pi − 1. By repeating this process for each pollen grain, a
randomised counting is achieved, corresponding to the suggested input
data when a sufficient amount of pollen grains are counted.

Once these data have been generated within the model environ-
ment, the model then ‘bins’ the simulation data. Binning is a process
simply used to group individual data values into one place; this is in-
stead of displaying a large amount of data separately. In this statistical
model, the simulation data can be binned using two different methods,
either by a pre-defined number of pollen grains per bin, or by counting
up to a fixed number of exotic markers in each bin. The method of bin-
ning can be chosen when using the model. The operator chooses a bin-
ningmethod and then ‘turns off’ the other method, meaning only one is
used during any onemodel run. For themodel runs used to generate the
results in Figs. 2–6, the simulation datawere binnedusing afixednumber
of exotic markers (Lycopodium sp. spores) per bin. The other method,
using a predefined number of pollen grains per bin, is useful if a low
number of exotic markers have been counted, i.e. when the pollen con-
centration is high.

A single model count run takes no more than a few seconds, there-
fore, generating multiple model runs simultaneously is possible, and
so statistical information can be obtained from the aggregated output.
This allows the multiple runs necessary for the Monte Carlo simulation
to be produced in a minimal time (c. 20 s). Data from multiple model
runs allow an error estimate for the counted distribution to be calculated
and, therefore, a pollen count size suitable for each specific sample to
within a 95% confidence interval to be determined (see Section 8 for
further information on output data).



Fig. 2.Model response to increasing amount of pollen count input data from a fossil pollen assemblage from the eastern Andean flank (Mera Tigre East). The amount of pollen count input
data varies from 100 grains (sub-sample A) to 1000 grains (sub-sample J) in increments of 100 grains. Count size outputs for detecting major vegetation composition (biome) Model 1
(Section 4.4.1) and the next not yet seen pollen taxa Model 2 (Section 4.4.2) for each sample are shown.

Fig. 3. Model response to increasing evenness in pollen assemblage composition. The richness value was kept the same (25) and the evenness increased from 0.1 (sub-sample A′) to 1.0
(sub-sample J′) in increments of 0.1. To maintain richness and evenness values it was necessary to use different input count size values. Count size outputs for detecting major vegetation
composition (biome) Model 1 (Section 4.4.1) and the next not yet seen pollen taxa Model 2 (Section 4.4.2) for each sample are shown. Data used is from a random generation and is not
indicative of any of the study sites.
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Fig. 4.Model response to increasing richness in pollen assemblage composition. The evenness valuewas kept the same (1.0) and the richness increased from5 (sub-sample A″) to 50 (sub-
sample J″) in increments of 5. To maintain richness and evenness values it was necessary to use different input count size values. Count size outputs for detecting major vegetation com-
position (biome) Model 1 (Section 4.4.1) and the next not yet seen pollen taxa Model 2 (Section 4.4.2) for each sample are shown. Data used is from a random generation and is not in-
dicative of any of the study sites.

Fig. 5.Model count size estimates for ten fossil pollen assemblages obtained from five different tropical study sites. Each fossil pollen assemblage has different ecological characteristics
(richness and evenness). The pollen count size outputs for detecting major vegetation composition (biome) Model 1 (Section 4.4.1) and the next not yet seen pollen taxa Model 2
(Section 4.4.2) for each sample are shown, alongside the empirical pollen count achieved through extended pollen counting.
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Fig. 6. Pollen assemblage data from amid-elevation site on the eastern Andeanflank (Mera Tigre East) for pollen count sizes of: i) 300 grains (black outline) and ii) extended counts based
on statistical sub-sampling tool estimates (Model 1), count size estimates required to detect the next not yet seen taxa (Model 2) are also shown (black crosses); Model 2 estimates are
based on an input of the extended pollen assemblage count data generated when counting to the target output from Model 1. All taxa N5% abundance are shown.
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4.3.2. Model parameters
For each model run the sub-sampling tool simulates the equivalent

of an empirical pollen count size of 2000 grains. The model is then run
one hundred times in succession (multiple simulations needed for the
Monte Carlo simulation) for the individual sub-sample being consid-
ered; the equivalent of considering the possible combination of
200,000 pollen grains. Generating an empirical pollen count of
200,000 grains from any one sample would take weeks, and so, is im-
practical. Therefore, the model provides an opportunity to explore the
characteristics of pollen assemblage data which was not previously
practical.

4.4. Determining appropriate count sizes for specific scientific questions

Two different statistical approaches are presented to address three
questions (listed in Section 2.3) which can be asked of the pollen data.
The first statistical approach (Model 1) determines the probability
that the pollen count has correctly characterised themajor components
of the pollen assemblage (Question i). The second (Model 2) assesses
the likely investigator effort required (number of additional pollen
grains that must be counted) to detect the next not yet seen taxa within
the pollen assemblage (Questions ii and iii).

4.4.1. Characterising major vegetation components (Model 1)
To determine statistically if the major components of the pollen as-

semblage have been characterised, the rank abundance of taxa within
a sample was examined, i.e. has the pollen count been of a sufficient
size to arrange the major components of the pollen assemblage in the
‘correct’ order. To assess the rank abundance, the Spearman's rank cor-
relation coefficient (a method of assessing the link between two differ-
ent variables) was calculated for a series of modelled count sizes (100,
200, 300 grains continuing up to 1000 grains) and compared against
the model endpoint (equivalent count size 200,000 pollen grains).

Once a Spearman's rank value of over 0.95 (standard statistical 95%
confidence level) is attained, then a reliable count is considered to
have been reached. Therefore, when the determined count size has
been achieved it can be considered that all major taxa have been
correctly characterised in terms of rank abundance, i.e. characterised
when the relative abundance of each of the major taxa (N5% abun-
dance) has met the proposed model proportion estimate within the
sample. This way of establishing a vegetation community representa-
tion in the pollen record (through means of major taxa) is used hereaf-
ter. However, in certain circumstances (e.g. very high richness) the
Spearman's rank correlation coefficient can never reach 0.95. This is be-
cause although major components of the rank correlation will look
identical, small differences in low abundance (minor) taxa can mean
the Spearman's rank correlation coefficient will not increase to a value
of 0.95. In this scenario the standard deviation of the Spearman's rank
correlation coefficient can be considered, i.e. the major components
have been characterised, but there is still uncertainty within the minor
taxa, leading to lower Spearman's rank correlation coefficient values.
To circumvent the statistical problem caused by the low abundance
taxa, a secondary threshold has been established at the point when
the standard deviation of the Spearman's rank correlation coefficient
reaches less than 0.05 for all taxa. The standard deviation determines
how far the Spearman's rank correlation coefficient value deviates
from the average. Once the standard deviation has reached a low level
(b0.05), it indicates that the relative proportions of the majority of the
taxa within the pollen assemblage have been successfully determined.
The standard deviation is calculated automatically within the model
and it is taken across all of the model runs and calculated for each
Spearman's rank coefficient, for each of the separate count size bins. Un-
fortunately, it is not possible to calculate standard deviations for empir-
ical pollen count data in the same way because it is not practical to
generate an equivalent quantity of data.
4.4.2. Determining sample richness and detecting rare and first occurrence
of taxa (Model 2)

To address ecological questions regarding diversity, and for the de-
tection of rare taxa, a different form of statistical assessment is required,
i.e. to determine howmanymore pollen grainswould have to be exam-
ined to discover the next as yet unseen pollen taxa. An estimation of the
investigator effort required to detect the next ‘missing’ taxa from any
sub-sample, can be obtained as follows.

image of Fig.�6
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The unknown taxa is defined as taxa x, something likely to be there,
but not yet discovered. If the aim is to find taxa x within the sample,
then a high enough total count (Ntot) needs to be achieved. This exper-
imental set up follows a Poisson distribution (probability of a given
number of the unknown taxa x occurring in a fixed interval, in this
case a total count size), meaning the variance on the number of un-
known pollen grainswithin a sample is xNtot and the standard deviation
of the unknown count size is

ffiffiffiffiffiffiffiffiffiffiffi
xNtot

p
. It is also known that within each

pollen sample, there will be a number of difficult to identify pollen
grains (Nunc), this could be known as the unknown taxa x. In many
cases the value Nunc can be set to equal 1, simply corresponding to the
next (unknown) pollen taxa at the end of the sample. The aim is to
know to within S standard deviations how many pollen grains need to
be counted for it to be likely that the number of unknown pollen grains
in the sample is smaller than Nunc given a total Ntot and an unknown x.
These numbers have to satisfy the following inequality (Eq. (4))
which can then be solved as an equality for xNtot (Eq. (5)).

Nuncb xNtot−S
ffiffiffiffiffiffiffiffiffiffiffi
xNtot

p
ð4Þ

To solve this inequality, solving for S
ffiffiffiffiffiffiffiffiffiffiffi
xNtot

p
followed by squaring

both sides will give a quadratic equation in xNtot with the following
solution:

xNtot N Nunc Nþ S2

2
þ S
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2 þ 4Nunc

q
ð5Þ

If it is hypothesised that we have nomore than one pollen unidenti-
fied taxa (e.g. the next not yet seen taxa) then, to within one standard
deviation S, the number of Ntot counts required to ensure that unknown
taxamake up nomore than a fraction x of the total sample is represent-
ed in Eq. (6).

xNtot N
3þ

ffiffiffi
5

p

2
¼ 2:618 ð6Þ

As a simple example, let's consider a pollen sample in which, to one
standard deviation, it is important to make sure that nomore than 0.1%
of pollen grains belong to an unknown taxa (i.e. x = 0.001 and S = 1).
If every pollen grain can be identified, the required count size is Ntot =
2.618/0.001 = a minimum count size of 2618 pollen grains. If there
areNunc unidentified grains, then the inequality (Eq. (5)) can be applied
instead to find the required count size Ntot for a given fraction of
unknown taxa x.

5. Results

Ideal count size estimates were produced from the examination of
both empirical data generated from extended pollen counts and the
sub-sampling tool outputs (Fig. 5).

5.1. Assessment of preliminary data input into the model

Pollen assemblage data for input into the model must be done at a
consistent taxonomic level. Some plant families produce pollen grains
which are hard to separate taxonomically (e.g. Poaceae), and thus are
often classified only to family level within pollen assemblage data
(Jantz et al., 2014). Keeping the taxonomic classification level of
model input data standard between samples allows values obtained
from different sub-samples to be compared. This does not mean that
thepalynologist needs to ignore the opportunity to classify pollen grains
at a finer taxonomic level; it simply means that once classified and
counted, the grains should be grouped into a consistent taxonomic
level for input into the model for the different sub-samples being stud-
ied. If the grains in some sub-samples cannot be classified to the same
taxonomic level, then taxa should be grouped together into the
appropriate genus/family to keep the input consistent.

In order for eachmodel run (each individual sample) to be compara-
ble, it is also important to have comparable input variables, specifically,
the amount of empirical pollen count data that are input into themodel.
A test run was performed using an extended count from the eastern
Andean flank (Mera Tigre East) to see whether variations in the quanti-
ty of pollen count data input affected the model output target pollen
count size. Due to the extended count being performed in stages, it
was possible to input pollen grain counts of increasing increments
(100, 200, 300 and so on.) into the model sequentially.

Regardless of how much empirical pollen assemblage data is input
into the model, the model output count size does not fluctuate by
more than ±13% from the average count size for Model 1 (Fig. 2).
This indicates that Model 1 count size estimates from a preliminary
input of 100 pollen grains are equally as acceptable as those generated
when 1000 pollen grains are input. Therefore, to save time, and mini-
mise wasted pollen counting effort, we recommend only 100 grains
need to be initially counted for input if the detection ofmajor vegetation
components is the goal (Model 1). The target pollen count size estimate
produced by the model can then be used to acquire the remaining
empirical pollen assemblage data.

The amount of additional pollen data required to detect the next not
yet seen pollen taxa, is directly related to the size of the empirical pollen
count input (Fig. 2), i.e. when only 100 grains have been counted it is
likely that you will come across a new taxa quicker than if you have
counted 1000 grains (compare Fig. 2A with J). Therefore, for the detec-
tion of the next not yet seen pollen taxa Model 2 is required to be run
iteratively through the countingprocess. At each step of themodel, a de-
cision can bemade by the palynologist for the satisfactory completion of
the sub-sample count. To ensure consistency between sub-samples, a
threshold cut-off value could be set. For example, a sub-sample pollen
assemblage count could be considered to have been completed when
no further new taxa are anticipated to be discovered within the next
500 grains based on the estimates of Model 2.

5.2. Assessment of model effectiveness

To assess the functioning of the model, ‘dummy’ pollen assemblage
data were input to ascertain how different ecological characteristics
(e.g. richness and evenness) affected the model target pollen count
size output estimates. These checks ensure that the model is working
intuitively and give confidence for the application of the statistical
sub-sampling tool as a guide for empirical pollen counting (see
Section 8 for details of the operation of the model).

Two hypothetical pollen assemblage data sets of ten samples each
were input into the model; the amount of pollen data input for each
sample was varied to maintain the desired richness and evenness
characteristics. In the first data set (scenario 1) the evenness increased
whilst the richness remained consistent (Fig. 3). In the second dataset
(scenario 2), the richness increased whilst the evenness remained
consistent (Fig. 4). By using the two test scenarios it was possible to
see, under controlled conditions, whether the model is performing as
anticipated.

5.2.1. Model 1
In scenario 1 it was expected that as evenness increased, the order of

themajor pollen assemblage components should become easier to pre-
dict, i.e. the Model 1 estimate target pollen count size should decrease
proportionally with increased evenness of the pollen assemblage data
(Fig. 3).

In scenario 2 it was expected that as richness increases, the pollen
assemblage should become increasingly harder to predict, i.e. the
Model 1 estimate target pollen count size should increase proportionally
with increased richness of the pollen assemblage data (Fig. 4).
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The two hypothetical pollen count data sets input into the statistical
sub-sampling tool demonstrate that themodel is performing intuitively,
i.e. more data (higher pollen counts) are recommended for pollen
assemblages with low evenness and high richness characteristics.

5.2.2. Model 2
As anticipated from investigationof the input count size data (Fig. 2),

in both scenarios 1 and 2 the outputs fromModel 2 were closely related
to the size of the pollen assemblage data input (Figs. 3 and 4).

5.3. Model output pollen count size estimates for specific study sites

To further assessmodel performance, model target pollen count size
outputs were generated for ten samples from five different tropical fos-
sil pollen records (Section 4.1). Modelled target pollen count sizes for
major taxa (biome) characterisation (Model 1) were highest for Mera
Tigre East 1 (870 grains) and Pacucha (741 grains), and lowest for
Bosumtwi (122 grains) and Challacaba (256 grains) (Fig. 5). Modelled
target pollen count sizes for rare taxa detection (Model 2) were highest
for Mera Tigre East 5 (input data: count size = 2495, richness = 34,
evenness = 0.83; output estimate of additional grains required to
count to detect one new taxa = 8553) and Mera Tigre East 4 (input
data: count size = 1449, richness = 32, evenness = 0.81; output esti-
mate of additional grains required to count to detect one new taxa =
6116 grains), and lowest for Khomer Kotcha Upper (input data: count
size= 1000, richness = 21, evenness = 0.59; output estimate of addi-
tional grains required to count to detect one new taxa = 1518 grains)
and Challacaba (input data: count size = 860, richness = 26,
evenness = 0.63; output estimate of additional grains required to
count to detect one new taxa = 1667 grains) (Fig. 5). Different consid-
eration of evenness and richness characteristics of the pollen assem-
blage within the two models means that the highest (lowest) pollen
count size estimates from one model do not necessarily correspond to
the highest (lowest) pollen count size estimates from the other (Fig. 5).

5.4. Example application of the statistical sub-sampling tool to a fossil
pollen record

To assess if using the count size estimates produced by themodel for
major taxa detection (Model 1) made a difference to the reconstructed
vegetation community from a fossil pollen record, two different pollen
counts from each of the six Mera Tigre East samples were compared
(Fig. 6). The first pollen count comprises pollen assemblage data obtain-
ed from a ‘standard’ pollen count of 300 terrestrial pollen grains (black
outline). The second pollen count comprises pollen assemblage data ob-
tained from pollen count targets estimated by Model 1 (ranging from
370 to 870 grains per sample; grey silhouette). The pollen assemblage
data acquired from the two sub-sampling techniques indicate that 10
of the 13 the major taxa present (N5% abundance) are the same for
both the ‘standard’ and ‘model’ count size target pollen assemblage
data; however, the relative abundance of some taxa alters, e.g. decrease
in relative abundance of taxa 4 and 9, and increase in relative abundance
of taxa 1 and 2. The consistent occurrence of most of the major compo-
nents demonstrates that the count size of 300 was just about sufficient
to identify the major elements of the vegetation community, but not to
establish the relative proportions.

Although Model 1 was not specifically designed to improve the de-
tection of pollen assemblage richness, by counting to the higher target
count sizes new insight into the diversity of the samples has been re-
vealed. Three previously unidentified taxa are now recorded at N5%.
Using the pollen assemblage data from the counts achieved following
the guidance from Model 1 as input, the model was run again and an
estimate of the additional grains to be counted to detect one more
taxa was obtained from Model 2 (Fig. 6). Additional pollen counting of
between 994 grains (sample 5) and 2598 grains (sample 1) were
estimated by Model 2. Therefore, to detect the presence of any further
taxa within the Mera Tigre East samples, significant additional investi-
gator effort would have to be deployed.
6. Discussion

6.1. Application of statistical sub-sampling tool to study sites

To ensure that the maximum amount of information can be col-
lected from a palynological investigation without counting an excess
of pollen grains, it is recommended that each sample is treated indi-
vidually. Individual pollen samples, regardless of whether or not
they are from the same sedimentary sequence, or different study
sites, are characterised by different richness and evenness values
(Fig. 5). The models both take into account the richness and even-
ness characteristics of individual samples to produce an estimate of
the optimal pollen count size required to: i) determine the relative
abundance of major taxa (Model 1), and ii) detect the next not yet
seen pollen taxa (Model 2).

Pollen assemblages with high richness require a pollen count size
higher than the often used ‘standard’ pollen count target of 300 grains
to characterise the major components. For example the high richness
Mera Tigre East sample 1 (richness=30) has an estimated target pollen
count size of 870 grains (Model 1; Fig. 5). Application of thepollen count
size recommended by Model 1 reveals a change in major taxa abun-
dance and richness between counts of 300 and 870 grains (Fig. 6), i.e.
a count size of only 300 grains for Mera Tigre East sample 1 provided
an inaccurate picture of the major taxa abundance and an under repre-
sentation of richness in the pollen assemblage.

Pollen assemblages with high evenness require a relatively lower
pollen count size, because, with the increase in evenness the sample
will be more easier to describe as all taxa are equally represented.
The Bosumtwi study site has the highest evenness (and lowest rich-
ness) of all of the sites presented here (Fig. 5). The combination of
high evenness and low richness results in the statistical sub-
sampling tool estimating an ideal pollen count size of only 122 grains
(Fig. 5). Therefore, if this Bosumtwi sample was counted to the ‘stan-
dard’ 300 terrestrial pollen grains then the palynologist would
‘waste’ effort on the sample.

As count sizes are predominantly driven by evenness and richness
(and other factors mentioned in Sections 1 and 2), it is imperative that
these are calculated (from the initial input data) for each sample and
taken into account when using the statistical sub-sampling tool to gen-
erate target pollen count sizes. Application of the statistical sub-
sampling tool for acquiring a target count size for pollen assemblage
data will help ensure that investigator effort is efficient, without
compromising the statistical robustness of the pollen assemblage data
produced. The application of Model 2 to a data set to assess how
efficiently pollen assemblage richness has been sampled is best done
iteratively due to the relationship between probability of detection
and pollen assemblage count size (Fig. 2).

The following steps are recommended for using the statistical
sub-sampling tool as a guide for empirical pollen counting:

i) Count 100 pollen grains from sub-sample.
ii) Run model using count of 100 pollen grains as input data.
iii) Extract target pollen count size estimate from Model 1.
iv) Count sub-sample up to Model 1 pollen count size target.
v) Run model using data from Model 1 count size target as input

data.
vi) Extract number of additional grains required to detect next not

yet seen pollen taxa from Model 2.
vii) Evaluate if additional investigator effort is required/possible. If

“no”, pollen count of this sub-sample is complete. If “yes”, iterate
steps v–vii until the answer is “no” using increased pollen count
sizes as input data for each increment.
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6.2. Detecting major vegetation community (biome) composition
assemblage data

As anticipated, Model 1 predicts count sizes which are higher for pol-
len assemblages with high richness and low evenness, e.g. for the
Pacucha sample, which has a high richness (28 taxa in a pollen count
of 337 grains) and low evenness (0.608) characteristics, a pollen count
size of 741 grains is estimated (Fig. 5). In contrast, pollen assemblages
which have lower richness and a higher evenness are estimated to re-
quire a relatively lower count size to detect major vegetation composi-
tion, e.g. for the Bosumtwi sample, which has low richness (18 taxa in
a pollen count of 971 grains) and high evenness (0.9), a pollen count
size of 122 grains is estimated. Estimates of pollen count sizes required
to characterise the parent vegetation community in the Bosumtwi sam-
ple are much lower than the Pacucha sample, and much lower than the
‘standard’ 300 grain pollen count size that is widely used. Therefore, in
Fig. 7.Model input file for ‘control.example.in’ shown in Aquamacs (www.aquamacs.org). A) re
Data should be formatted in three columns, column one being species, two being the taxa name
Lycopodium). B) represents the code required to run themodel (./pollen_counter_stats.py contro
the name youwant to output the file to. C shows themodel output in the form of a.dat file (show
is reached when column C (rho_spearmans) reaches 0.95; in this case the count size is 408.
the Bosumtwi example, the application of Model 1 to determine the
pollen count size required during pollen counting would have reduced
investigator effort into this sample, i.e. there was little point counting
to N300 grains for the purpose of determining major vegetation
components.

The six Mera Tigre East samples were analysed to both a
‘standard’ count size of 300 grains, and to the count size estimates
produced by Model 1 (Fig. 6). After the Model 1 count size targets
had been achieved, the most noticeable difference to the pollen
assemblage was that the relative abundance of some major taxa
changed (taxa 2, 4 and 9) and three new taxa were detected at N5%
abundance (Fig. 6). Although most of the major taxa within the pol-
len assemblage were ever present, the change in relative abundances
and diversity could impact the interpretation of the pollen assem-
blage data. In the Mera Tigre East example, counting to Model 1
estimates indicates a more diverse parent vegetation community
presents the format for data input into themodel. The input file is composed in Aquamacs.
and three being the count of the taxa. Themarker should be included as a reference (here
l.sample.in Ncontrol.sample.dat), this is simply themodelfile, the inputfile name and then
n in Aquamacs). D) shows themodel output exported intoMicrosoft Excel. The count size

image of Fig.�7
http://www.aquamacs.org
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thanwould have been interpreted if only the ‘standard’ pollen counts of
300 grains had been achieved.

6.3. Detecting pollen assemblage richness and rare taxa

To provide statistical support for the detection, or otherwise, pollen
count size estimates required to detect the next not yet seen pollen taxa
are provided by Model 2. The probability of how quickly a ‘new’ pollen
taxa will be detected by further counting is directly related to the num-
ber of pollen grains already counted and input into the model (Figs. 2–
5). Consequently, to use Model 2 as a guide for pollen counting we ad-
vocate an iterative application (Section 6.1). Given the probability of
extra-regional pollen being transported into any study site amongst
other reasons, it is unlikely that any pollen count can ever sample the
total pollen richness of an assemblage. Therefore, the decision on
when a pollen count is complete becomes a trade-off between investi-
gator time available and importance of detecting rare taxa to the ecolog-
ical question posed.

The Mera Tigre East example was counted up to the target pollen
counts established using Model 1 (Fig. 6, data in grey silhouette), and
these data were then input into the model to obtain an estimate of
howmany more pollen grains would need to be counted for each sam-
ple to detect another pollen taxa (Model 2; Fig. 6, black and crosses). In
all instances to reach the Model 2 target the pollen count size would
have to be more than doubled to detect one further pollen type
(Fig. 6). Therefore, in the Mera Tigre East example, it was decided that
the high investigator effort required (more than doubling of time
already invested), coupled with the low additional insight into the
ecological characteristics projected (detection of one additional pollen
type in each sample) was insufficient to merit further pollen counting.
The Mera Tigre East fossil pollen samples were, therefore, considered
to be complete upon reaching the pollen count size estimates projected
by Model 1.

7. Conclusions

The widely used ‘standard’ pollen count size of 300 terrestrial pollen
grains has been shown to be sufficient to provide an overview of pollen
assemblage major composition (Fig. 1, (Birks and Birks, 1980). Howev-
er, consideration of the ecological characteristics (richness and even-
ness) of individual pollen assemblages (sub-samples) can facilitate
more effective and efficient pollen counting. The sub-sampling tool pre-
sented here offer an alternativemethodology for pollen counting specif-
ically designed to detect both vegetation community (biome)
composition and richness.

We recommend that the statistical sub-sampling tool be applied to
palynological investigations on a sample-by-sample basis to account
for the variance in parent vegetation community (pollen assemblage)
ecological characteristics through both time and space. We recommend
that Model 1 be applied to palynological investigations interested in
determiningmajor components of vegetation communities. We recom-
mend that Model 2 is only applied after target count sizes estimated by
Model 1 have been achieved, and to palynological investigations where
determining the diversity characteristics, and/or detection of rare taxa is
particularly critical due to the high investigator effort required. The key
advantages to the palynologist of using the statistical sub-sampling tool
are:

• All pollen assemblage data have the same statistical confidence (not
count size).

• Pollen count size targets are linked to the research question.
• Investigator effort can be deployed in a targeted manner.

Although designedwith the specific application to investigate pollen
assemblages, there is no reason why the statistical sub-sampling tool
presented here could not be used to guide other types of ecological
and palaeoecological investigations.
8. Statistical sub-sampling tool

README file for pollen counter python package.
This archive should contain six files:

• README: The current file.
• LICENSE: A copy of the LGPL v3.0which governs the distribution of the
program.

• pollen_counter.py: python executable for a single pollen counting
run.

• pollen_counter_stats.py: python executable for a common pollen
counting run with Spearman's rank statistics included.

• documentation.txt: Documentation of all available keywords for
controlling the simulation.

• control.example.in: example simulation used for Fig. 6 in the accom-
panying paper. Fig. 7 represents the input and output files for this
file. Note: This example contains more than the recommended 100
input grains.

NOTE: This package requires an implementation of the python pro-
gramming language to be installed and needs to be run from a terminal
prompt. Some operating systems (e.g. linux/unix and OSX) provide
these facilities by default, others may require the download of addition-
al software available freely on the internet.
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Appendix A. Supplementary material

Six files comprising the statistical sub-sampling tool will be
uploaded as supplementary material. This will contain Model 1 and
Model 2, one documentation file, the license, an example run file and
an instruction document. It will also contain information about all of
the software required to run the model. Supplementary data to this ar-
ticle can be found online at http://dx.doi.org/10.1016/j.palaeo.2014.05.
001.
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