173 research outputs found
Radiocarbon dating of modern peat profiles: Pre- and post-bomb C-14 variations in the construction of age-depth models
We present studies of 9 modern (up to 400-yr-old) peat sections from Slovenia, Switzerland, Austria, Italy, and Finland. Precise radiocarbon dating of modern samples is possible due to the large bomb peak of atmospheric 14C concentration in 1963 and the following rapid decline in the 14C level. All the analyzed 14C profiles appeared concordant with the shape of the bomb peak of atmospheric 14C concentration, integrated over some time interval with a length specific to the peat section. In the peat layers covered by the bomb peak, calendar ages of individual peat samples could be determined almost immediately, with an accuracy of 23 yr. In the pre-bomb sections, the calendar ages of individual dated samples are determined in the form of multi-modal probability distributions of about 300 yr wide (about AD 16501950). However, simultaneous use of the post-bomb and pre-bomb 14C dates, and lithological information, enabled the rejection of most modes of probability distributions in the pre-bomb section. In effect, precise age-depth models of the post-bomb sections have been extended back in time, into the wiggly part of the 14C calibration curve
Breakthrough in purification of fossil pollen for dating of sediments by a new large-particle on-chip sorter
Particle sorting is a fundamental method in various fields of medical and biological research. However, existing sorting applications are not capable for high-throughput sorting of large-size (>100 micrometers) particles. Here, we present a novel on-chip sorting method using traveling vortices generated by on-demand microjet flows, which locally exceed laminar flow condition, allowing for high-throughput sorting (5 kilohertz) with a record-wide sorting area of 520 micrometers. Using an activation system based on fluorescence detection, the method successfully sorted 160-micrometer microbeads and purified fossil pollen (maximum dimension around 170 micrometers) from lake sediments. Radiocarbon dates of sorting-derived fossil pollen concentrates proved accurate, demonstrating the method’s ability to enhance building chronologies for paleoenvironmental records from sedimentary archives. The method is capable to cover urgent needs for high-throughput large-particle sorting in genomics, metabolomics, and regenerative medicine and opens up new opportunities for the use of pollen and other microfossils in geochronology, paleoecology, and paleoclimatology
Acute ST segment elevation during exercise stress echocardiography due to severe pulmonary hypertension
A 51-year-old female undergoing an outpatient stress echocardiogram to evaluate atypical chest pain developed acute ST elevation in the anterior precordial leads on electrocardiogram following exercise. Echocardiography revealed a severe rise in pulmonary artery systolic pressure (PASP) with marked right ventricular (RV) enlargement and interventricular septum flattening. Subsequently, cardiac catherization confirmed an exercise-induced elevation in PASP and diagnosed pulmonary arterial hypertension without evidence of coronary artery disease. This case suggests that an acute elevation in pulmonary artery pressure with RV dilation may be a potential cause of acute ST elevation during stress testing
Vertical zonation of testate amoebae in the Elatia Mires, northern Greece : palaeoecological evidence for a wetland response to recent climate change or autogenic processes?
The Elatia Mires of northern Greece are unique ecosystems of high conservation value. The mires are climatically marginal and may be sensitive to changing hydroclimate, while northern Greece has experienced a significant increase in aridity since the late twentieth century. To investigate the impact of recent climatic change on the hydrology of the mires, the palaeoecological record was investigated from three near-surface monoliths extracted from two sites. Testate amoebae were analysed as sensitive indicators of hydrology. Results were interpreted using transfer function models to provide quantitative reconstructions of changing water table depth and pH. AMS radiocarbon dates and 210Pb suggest the peats were deposited within the last c. 50 years, but do not allow a secure chronology to be established. Results from all three profiles show a distinct shift towards a more xerophilic community particularly noted by increases in Euglypha species. Transfer function results infer a distinct lowering of water tables in this period. A hydrological response to recent climate change is a tenable hypothesis to explain this change; however other possible explanations include selective test decay, vertical zonation of living amoebae, ombrotrophication and local hydrological change. It is suggested that a peatland response to climatic change is the most probable hypothesis, showing the sensitivity of marginal peatlands to recent climatic change
The absolute chronology of collective burials from the 2nd Millennium BC in East Central Europe
This article discusses the absolute chronology of collective burials of the Trzciniec Cultural Circle
communities of the Middle Bronze Age in East Central Europe. Based on Bayesian modeling of 91 accelerator mass spectrometry radiocarbon (AMS 14C) dates from 18 cemeteries, the practice of collective burying of individuals was linked to a period of 400-640 (95.4%) years, between 1830–1690 (95.4%) and 1320-1160 (95.4%) BC. Collective burials in mounds with both cremation and inhumation rites were found earliest in the upland zone regardless of grave structure type (mounded or flat). Bayesian modeling of 14C determinations suggests that this practice was being transmitted generally from the southeast to the northwest direction. Bayesian modeling of the dates from the largest cemetery in Z· erniki Górne, Lesser Poland Upland, confirmed the duration of use of the necropolis as ca. 140–310 (95.4%) years. Further results show the partial contemporaneity of burials and allow formulation of a spatial and temporal development model of the necropolis. Based on the investigation, some graves were used over just a couple of years and others over nearly 200, with up to 30 individuals found in a single grave
Acute ECG ST-segment elevation mimicking myocardial infarction in a patient with pulmonary embolism
Pulmonary embolism is a common cardiovascular emergency, but it is still often misdiagnosed due to its unspecific clinical symptoms. Elevated troponin concentrations are associated with greater morbidity and mortality in patients with pulmonary embolism. Right ventricular ischemia due to increased right ventricular afterload is believed to be underlying mechanism of elevated troponin values in acute pulmonary embolism, but a paradoxical coronary artery embolism through opened intra-artrial communication is another possible explanation as shown in our case report
Stable Carbon and Nitrogen Isotopes in a Peat Profile Are Influenced by Early Stage Diagenesis and Changes in Atmospheric CO2 and N Deposition
In this study, we test whether the δ13C and δ15N in a peat profile are, respectively, linked to the recent dilution of atmospheric δ13CO2 caused by increased fossil fuel combustion and changes in atmospheric δ15N deposition. We analysed bulk peat and Sphagnum fuscum branch C and N concentrations and bulk peat, S. fuscum branch and Andromeda polifolia leaf δ13C and δ15N from a 30-cm hummock-like peat profile from an Aapa mire in northern Finland. Statistically significant correlations were found between the dilution of atmospheric δ13CO2 and bulk peat δ13C, as well as between historically increasing wet N deposition and bulk peat δ15N. However, these correlations may be affected by early stage kinetic fractionation during decomposition and possibly other processes. We conclude that bulk peat stable carbon and nitrogen isotope ratios may reflect the dilution of atmospheric δ13CO2 and the changes in δ15N deposition, but probably also reflect the effects of early stage kinetic fractionation during diagenesis. This needs to be taken into account when interpreting palaeodata. There is a need for further studies of δ15N profiles in sufficiently old dated cores from sites with different rates of decomposition: These would facilitate more reliable separation of depositional δ15N from patterns caused by other processes
The Cultural Project : Formal Chronological Modelling of the Early and Middle Neolithic Sequence in Lower Alsace
Starting from questions about the nature of cultural diversity, this paper examines the pace and tempo of change and the relative importance of continuity and discontinuity. To unravel the cultural project of the past, we apply chronological modelling of radiocarbon dates within a Bayesian statistical framework, to interrogate the Neolithic cultural sequence in Lower Alsace, in the upper Rhine valley, in broad terms from the later sixth to the end of the fifth millennium cal BC. Detailed formal estimates are provided for the long succession of cultural groups, from the early Neolithic Linear Pottery culture (LBK) to the Bischheim Occidental du Rhin Supérieur (BORS) groups at the end of the Middle Neolithic, using seriation and typology of pottery as the starting point in modelling. The rate of ceramic change, as well as frequent shifts in the nature, location and density of settlements, are documented in detail, down to lifetime and generational timescales. This reveals a Neolithic world in Lower Alsace busy with comings and goings, tinkerings and adjustments, and relocations and realignments. A significant hiatus is identified between the end of the LBK and the start of the Hinkelstein group, in the early part of the fifth millennium cal BC. On the basis of modelling of existing dates for other parts of the Rhineland, this appears to be a wider phenomenon, and possible explanations are discussed; full reoccupation of the landscape is only seen in the Grossgartach phase. Radical shifts are also proposed at the end of the Middle Neolithic
Acacia trees on the cultural landscapes of the Red Sea Hills
This paper examines interactions between five pastoral nomadic culture groups of the Egyptian and Sudanese Red Sea Hills and the acacia trees Acacia tortilis (Forssk.) Hayne subsp. tortilis and subsp. raddiana growing in their arid environments. A. tortilis is described as a keystone species both ecologically and culturally: the trees play such critical roles in ecosystems and social groups that their removal would greatly impact both systems. Interviews in the field with the Semitic, Arabic-speaking Ma‘aza and Ababda, and the Cushitic, Beja, Bidhaawyeet-speaking Bishaari, Amar Ar and Hadandawa nomads probed the cultural and ecological contexts of acacias in pastoral nomadism, revealing deep insight into traditional ecological knowledge and traditional perceptions and uses of the trees. The paper describes how this knowledge guides pastoral decision-making, with acacias as a particularly critical component of the pastoral livelihood in both normal and stressful circumstances. A. tortilis is the most important reliable vegetation resource for nomads while also providing fuel and other useful products, ecosystem services for people and animals, and increased biodiversity by providing diverse microhabitats and resources for other species. We describe aspects of kinship, territorial organization, spiritual beliefs and tribal law underlying the significance of trees on the cultural landscape. We discuss environmental and economic challenges to human/tree relationships and to pastoral livelihoods. We challenge views of nomads as agents of ecological destruction, and propose maintenance and restoration of traditional pastoralism as viable alternatives in dryland development
- …