93 research outputs found

    Wooden sticks as environmental enrichment: effect on fattening and carcass traits of individually housed growing rabbits

    Full text link
    [EN] The aim of our study was to examine the influence of wooden sticks for gnawing as environmental enrichment on fattening, carcass and meat quality traits of growing rabbits. Forty-eight rabbits of SIKA sire line (Slovenian line for meat production) of both sexes were housed individually in wire-mesh cages equipped only with a feeder and a nipple drinker. Half of the cages were enriched with wooden sticks of Norway spruce (Picea abies). That was the experimental group whereas the other half was the control group. Animals had free access to feed and water, daily duration of lighting was 12 h. The experiment lasted from 44th to 103rd d of age. The consumption of wood was less than 0.5 % of the total feed intake. Results indicate that fattening and carcass traits, as well as meat quality were not influenced by environmental enrichment, although in the experimental group a smaller large intestine percentage (-0.21±0.13 %; [Pr(|difference|>0)=0.94]) was observed. Additionally rabbits in experimental group had redder meat values [Pr(|difference|>0)=0.92]. However, given that wooden sticks had no negative impact on rabbits performance, sticks made of Norway spruce can still be treated as appropriate environmental enrichment for growing rabbits.Jordan, D.; Gorjanc, G.; Kermauner, A.; Stuhec, I. (2008). Wooden sticks as environmental enrichment: effect on fattening and carcass traits of individually housed growing rabbits. World Rabbit Science. 16(4). doi:10.4995/wrs.2008.619SWORD16

    Genomic prediction with whole-genome sequence data in intensely selected pig lines

    Get PDF
    Background Early simulations indicated that whole-genome sequence data (WGS) could improve the accuracy of genomic predictions within and across breeds. However, empirical results have been ambiguous so far. Large datasets that capture most of the genomic diversity in a population must be assembled so that allele substitution effects are estimated with high accuracy. The objectives of this study were to use a large pig dataset from seven intensely selected lines to assess the benefits of using WGS for genomic prediction compared to using commercial marker arrays and to identify scenarios in which WGS provides the largest advantage. Methods We sequenced 6931 individuals from seven commercial pig lines with different numerical sizes. Genotypes of 32.8 million variants were imputed for 396,100 individuals (17,224 to 104,661 per line). We used BayesR to perform genomic prediction for eight complex traits. Genomic predictions were performed using either data from a standard marker array or variants preselected from WGS based on association tests. Results The accuracies of genomic predictions based on preselected WGS variants were not robust across traits and lines and the improvements in prediction accuracy that we achieved so far with WGS compared to standard marker arrays were generally small. The most favourable results for WGS were obtained when the largest training sets were available and standard marker arrays were augmented with preselected variants with statistically significant associations to the trait. With this method and training sets of around 80k individuals, the accuracy of within-line genomic predictions was on average improved by 0.025. With multi-line training sets, improvements of 0.04 compared to marker arrays could be expected. Conclusions Our results showed that WGS has limited potential to improve the accuracy of genomic predictions compared to marker arrays in intensely selected pig lines. Thus, although we expect that larger improvements in accuracy from the use of WGS are possible with a combination of larger training sets and optimised pipelines for generating and analysing such datasets, the use of WGS in the current implementations of genomic prediction should be carefully evaluated against the cost of large-scale WGS data on a case-by-case basis

    Potential of genotyping-by-sequencing for genomic selection in livestock populations

    Get PDF
    International audienceBackground Next-generation sequencing techniques, such as genotyping-by-sequencing (GBS), provide alternatives to single nucleotide polymorphism (SNP) arrays. The aim of this work was to evaluate the potential of GBS compared to SNP array genotyping for genomic selection in livestock populations.MethodsThe value of GBS was quantified by simulation analyses in which three parameters were varied: (i) genome-wide sequence read depth (x) per individual from 0.01x to 20x or using SNP array genotyping; (ii) number of genotyped markers from 3000 to 300 000; and (iii) size of training and prediction sets from 500 to 50 000 individuals. The latter was achieved by distributing the total available x of 1000x, 5000x, or 10 000x per genotyped locus among the varying number of individuals. With SNP arrays, genotypes were called from sequence data directly. With GBS, genotypes were called from sequence reads that varied between loci and individuals according to a Poisson distribution with mean equal to x. Simulated data were analyzed with ridge regression and the accuracy and bias of genomic predictions and response to selection were quantified under the different scenarios.ResultsAccuracies of genomic predictions using GBS data or SNP array data were comparable when large numbers of markers were used and x per individual was ~1x or higher. The bias of genomic predictions was very high at a very low x. When the total available x was distributed among the training individuals, the accuracy of prediction was maximized when a large number of individuals was used that had GBS data with low x for a large number of markers. Similarly, response to selection was maximized under the same conditions due to increasing both accuracy and selection intensity.ConclusionsGBS offers great potential for developing genomic selection in livestock populations because it makes it possible to cover large fractions of the genome and to vary the sequence read depth per individual. Thus, the accuracy of predictions is improved by increasing the size of training populations and the intensity of selection is increased by genotyping a larger number of selection candidates

    Flexible modelling of spatial variation in agricultural field trials with the R package INLA

    Get PDF
    The objective of this paper was to fit different established spatial models for analysing agricultural field trials using the open-source R package INLA. Spatial variation is common in field trials, and accounting for it increases the accuracy of estimated genetic effects. However, this is still hindered by the lack of available software implementations. We compare some established spatial models and show possibilities for flexible modelling with respect to field trial design and joint modelling over multiple years and locations. We use a Bayesian framework and for statistical inference the integrated nested Laplace approximations (INLA) implemented in the R package INLA. The spatial models we use are the well-known independent row and column effects, separable first-order autoregressive ( AR1⊗AR1 ) models and a Gaussian random field (MatĂ©rn) model that is approximated via the stochastic partial differential equation approach. The MatĂ©rn model can accommodate flexible field trial designs and yields interpretable parameters. We test the models in a simulation study imitating a wheat breeding programme with different levels of spatial variation, with and without genome-wide markers and with combining data over two locations, modelling spatial and genetic effects jointly. The results show comparable predictive performance for both the AR1⊗AR1 and the MatĂ©rn models. We also present an example of fitting the models to a real wheat breeding data and simulated tree breeding data with the Nelder wheel design to show the flexibility of the MatĂ©rn model and the R package INLA

    Genetic prediction of complex traits: integrating infinitesimal and marked genetic effects

    Get PDF
    Genetic prediction for complex traits is usually based on models including individual (infinitesimal) or marker effects. Here, we concentrate on models including both the individual and the marker effects. In particular, we develop a ''Mendelian segregation'' model combining infinitesimal effects for base individuals and realized Mendelian sampling in descendants described by the available DNA data. The model is illustrated with an example and the analyses of a public simulated data file. Further, the potential contribution of such models is assessed by simulation. Accuracy, measured as the correlation between true (simulated) and predicted genetic values, was similar for all models compared under different genetic backgrounds. As expected, the segregation model is worthwhile when markers capture a low fraction of total genetic variance. (Résumé d'auteur
    • 

    corecore