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RESEARCH ARTICLE

Genomic prediction with whole‑genome 
sequence data in intensely selected pig lines
Roger Ros‑Freixedes1,2*  , Martin Johnsson1,3, Andrew Whalen1, Ching‑Yi Chen4, Bruno D. Valente4, 
William O. Herring4, Gregor Gorjanc1 and John M. Hickey1 

Abstract 

Background: Early simulations indicated that whole‑genome sequence data (WGS) could improve the accuracy of 
genomic predictions within and across breeds. However, empirical results have been ambiguous so far. Large data‑
sets that capture most of the genomic diversity in a population must be assembled so that allele substitution effects 
are estimated with high accuracy. The objectives of this study were to use a large pig dataset from seven intensely 
selected lines to assess the benefits of using WGS for genomic prediction compared to using commercial marker 
arrays and to identify scenarios in which WGS provides the largest advantage.

Methods: We sequenced 6931 individuals from seven commercial pig lines with different numerical sizes. Genotypes 
of 32.8 million variants were imputed for 396,100 individuals (17,224 to 104,661 per line). We used BayesR to perform 
genomic prediction for eight complex traits. Genomic predictions were performed using either data from a standard 
marker array or variants preselected from WGS based on association tests.

Results: The accuracies of genomic predictions based on preselected WGS variants were not robust across traits and 
lines and the improvements in prediction accuracy that we achieved so far with WGS compared to standard marker 
arrays were generally small. The most favourable results for WGS were obtained when the largest training sets were 
available and standard marker arrays were augmented with preselected variants with statistically significant associa‑
tions to the trait. With this method and training sets of around 80k individuals, the accuracy of within‑line genomic 
predictions was on average improved by 0.025. With multi‑line training sets, improvements of 0.04 compared to 
marker arrays could be expected.

Conclusions: Our results showed that WGS has limited potential to improve the accuracy of genomic predictions 
compared to marker arrays in intensely selected pig lines. Thus, although we expect that larger improvements in 
accuracy from the use of WGS are possible with a combination of larger training sets and optimised pipelines for gen‑
erating and analysing such datasets, the use of WGS in the current implementations of genomic prediction should be 
carefully evaluated against the cost of large‑scale WGS data on a case‑by‑case basis.

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
Whole-genome sequence (WGS) data have the poten-
tial to empower the identification of causal variants that 
underlie quantitative traits and diseases [1–4], increase 

the precision and scope of population genetic studies 
[5, 6], and enhance livestock breeding. Genomic predic-
tion has been successfully implemented in the main live-
stock species and it has increased the rate of genetic gain 
[7]. Genomic prediction has provided multiple benefits, 
including greater accuracies of genetic evaluations in 
livestock populations, such as cattle and pig, and reduced 
generational intervals, most notably in dairy cattle. Since 
its early implementations, genomic prediction is typically 
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performed using marker arrays that capture the effects 
of the (usually unknown) causal variants via linkage and 
linkage disequilibrium [8, 9]. In contrast, WGS data are 
assumed to contain the causal variants. For this reason, it 
was hypothesized that WGS could improve the accuracy 
of genomic predictions and its persistence across genera-
tions and breeds. Indeed, early simulations indicated that 
the inclusion of causal mutations based on WGS data 
could increase prediction accuracy. One simulation study 
indicated that the improvement in prediction accuracy 
relative to dense marker arrays ranged from 2.5 to 3.7% 
and persisted even when the training and testing sets 
were 10 generations apart [10]. Another study reported 
improvements in prediction accuracy of up to 30% when 
causal variants with a low minor allele frequency were 
captured by the WGS data [11]. However, benefits could 
be low in typical livestock populations due to small effec-
tive population sizes and recent directional selection [12].

During the last few years, there have been several 
attempts at improving the accuracy of genomic predic-
tion with WGS in the main livestock species. Empirical 
results have been ambiguous so far. When predicting 
genomic breeding values within a population, some stud-
ies found no relevant improvement in accuracy with 
WGS data compared to marker arrays [13–16]. Other 
studies have found small but often unstable improve-
ments (e.g., from 1 to 5% or no improvement depending 
on the prediction method used [17–19], or trait-depend-
ent results [19, 20]). For genomic prediction across popu-
lations, the identification and inclusion of causal variants 
from WGS have been shown to improve prediction accu-
racy [21–24], especially for numerically small popula-
tions and for populations that are not represented in the 
training set [21, 23–27].

One of the most successful strategies to exploit WGS 
data consists of augmenting available marker arrays with 
preselected variants from WGS data based on their asso-
ciation with the trait of interest [28–31]. In some cases, 
this strategy improved the accuracy of genomic predic-
tion by up to 9% (using a multi-breed training set) [30], 
and 11% (within line) [31], but this strategy did not 
improve prediction accuracy in other cases [15]. Never-
theless, these examples indicate that identifying causal 
variants from WGS data could enhance genomic pre-
diction. Whole-genome sequence data has already been 
applied in genome-wide association studies (GWAS) 
to identify variants associated with a variety of traits in 
livestock [2, 32–34], including pigs [35, 36]. However, the 
fine-mapping of causal variants remains challenging due 
to the pervasive long-range linkage disequilibrium across 
extremely dense variants [37].

Accurate estimation of allele substitution effects and, 
ideally, identification of causal variants among millions of 

other variants are important applications of WGS data in 
research and breeding. These require large datasets that 
can capture most of the genome diversity in a population. 
Low-cost sequencing strategies have been developed, 
which typically involve sequencing a subset of the indi-
viduals in a population at low coverage and then imput-
ing WGS data for the remaining individuals. However, 
the cost of generating accurate WGS data at such a large 
scale and the large computational requirements for the 
analyses of the resulting datasets have limited the popula-
tion sizes or number of populations that have been tested 
in previous studies. This hinders the comparison of pre-
diction accuracies across studies, which differ widely in 
population structures, sequencing strategies, and predic-
tion methodologies used. The largest studies in livestock 
on the use of WGS for genomic prediction to date have 
been performed in cattle, for which a large multi-breed 
reference panel is available from the 1000 Bull Genomes 
Project [2, 17, 32]. This reference panel has enabled the 
imputation of WGS data in many cattle populations. The 
lack of such reference panels hampers the potential of 
WGS data in other species, such as pigs [35].

We have previously described our approach to impute 
WGS data in large pedigreed populations without exter-
nal reference panels [38]. Following that strategy, we gen-
erated WGS data for 396,100 pigs from seven intensely 
selected lines with diverse genetic backgrounds and 
numerical sizes. The objectives of this study were to use 
this large pig dataset to assess the benefits of using WGS 
data for genomic prediction compared to using commer-
cial marker arrays, to identify scenarios in which WGS 
provides the largest advantage, and to identify potential 
pitfalls for its effective use.

Methods
Populations and sequencing strategy
We re-sequenced the whole genome of 6931 individu-
als from seven commercial pig lines (Genus PIC, Hen-
dersonville, TN) with a total coverage of approximately 
27,243×. Breeds of origin of the nine lines included Large 
White, Landrace, Pietrain, Hampshire, Duroc, and syn-
thetic lines. The sequencing effort in each of the seven 
lines was proportional to population size. The number of 
pigs that were available in the pedigree of each line and 
the number of sequenced pigs, by coverage, are sum-
marized in Table  1. Approximately 1.5% (0.9 to 2.1% in 
each line) of the pigs in each line were sequenced. Most 
pigs were sequenced at low coverage, with a target cov-
erage of 1 or 2×, but a subset of the pigs was sequenced 
at a higher coverage of 5, 15, or 30×. Thus, the average 
individual coverage was 3.9×, but the median coverage 
was 1.5×. Most of the sequenced pigs were born during 
the 2008–2016 period. The population structure across 
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the seven lines was assessed with a principal component 
analysis using the sequenced pigs and is shown in Addi-
tional file 1: Fig. S1.

The sequenced pigs and their coverage were selected 
following a three-part sequencing strategy that was 
developed to represent the haplotype diversity in each 
line. First (1), sires and dams with the largest number 
of genotyped progeny were sequenced at 2× and 1×, 
respectively. Sires were sequenced at a greater cover-
age because they contributed with more progeny than 
dams. Then (2), the individuals with the greatest genetic 
footprint on the population (i.e., those that carry more 
of the most common haplotypes) and their immediate 
ancestors were sequenced at a coverage between 1× and 
30× (AlphaSeqOpt part 1; [39]). The sequencing cover-
age was allocated with an algorithm that maximises the 
expected phasing accuracy of the common haplotypes 
based on the accumulated family information. Finally (3), 
pigs that carried haplotypes with a low accumulated cov-
erage (below 10× across all sequenced individuals) were 
sequenced at 1× (AlphaSeqOpt part 2; [40]). Sets (2) and 
(3) were based on haplotypes inferred from marker array 
genotypes (GGP-Porcine HD BeadChip; GeneSeek, Lin-
coln, NE), which were phased using AlphaPhase [41] and 
imputed using AlphaImpute [42].

Most sequenced pigs, as well as pedigree relatives, were 
also genotyped with marker arrays, either at low den-
sity (15k markers) using the GGP-Porcine LD BeadChip 
(GeneSeek) or at high density (50k or 80k markers), using 
different versions of the GGP-Porcine HD BeadChip 
(GeneSeek). In our study we only used markers included 
in the 50k array, which is the latest version of the high-
density array. Markers in the 15k array were nested 
within the 50k array and markers from the 80k array 
that were not included in the 50k array were discarded. 
The number of pigs that were genotyped at each density 
is summarized in Table 1. Quality control of the marker 

array data was based on the individuals genotyped at 
high density. Markers with a minor allele frequency lower 
than 0.01, a call rate lower than 0.80, or that showed a 
significant deviation from the Hardy–Weinberg equilib-
rium were removed, separately for each line. After quality 
control, 38,634 to 43,966 markers remained for each line.

Sequencing and data processing
Tissue samples were collected from ear punches or tail 
clippings. Genomic DNA was extracted using Qiagen 
DNeasy 96 Blood & Tissue kits (Qiagen Ltd., Missis-
sauga, ON, Canada). Paired-end library preparation was 
conducted using the TruSeq DNA PCR-free protocol 
(Illumina, San Diego, CA). Libraries for resequencing 
at low coverage (1 to 5×) were produced with an aver-
age insert size of 350 bp and sequenced on a HiSeq 4000 
instrument (Illumina). Libraries for resequencing at high 
coverage (15 or 30×) were produced with an average 
insert size of 550 bp and sequenced on a HiSeq X instru-
ment (Illumina). All libraries were sequenced at Edin-
burgh Genomics (Edinburgh Genomics, University of 
Edinburgh, Edinburgh, UK).

DNA sequence reads were pre-processed using 
the Trimmomatic software [43] to remove adapter 
sequences from the reads. The reads were then aligned 
to the reference genome Sscrofa11.1 (GenBank accession: 
GCA_000003025.6) using the BWA-MEM algorithm 
[44]. Duplicates were marked with Picard (http:// broad 
insti tute. github. io/ picard). Single nucleotide polymor-
phisms (SNPs) and short insertions and deletions (indels) 
were identified with the variant caller GATK Haplo-
typeCaller (GATK 3.8.0) [45, 46], using default settings. 
Variant discovery was performed separately for each 
individual and then a joint variant set for all the individu-
als in each population was obtained by extracting the var-
iant positions from all individuals.

Table 1 Numbers of pigs sequenced and imputed

Pedigree number of individuals included in the pedigree used for imputation, LD number of individuals genotyped with the low‑density marker array, HD number of 
individuals genotyped with high‑density marker arrays, Imputed number of individuals with imputed genotypes that remain after filtering out individuals with low 
predicted imputation accuracy

Line Individuals 
sequenced

Individuals sequenced by coverage Individuals used in the analyses

1x 2x 5x 15–30x Pedigree LD HD Imputed

A 1856 1044 649 73 90 122,753 39,485 66,763 104,661

B 1366 685 545 44 92 88,964 39,110 38,763 76,230

C 1491 628 728 54 81 84,420 35,343 34,358 66,608

D 731 362 311 16 42 79,981 16,650 54,297 60,474

E 760 394 274 27 65 50,797 22,768 20,685 41,573

F 381 193 137 16 35 35,309 11,747 17,758 29,330

G 445 217 176 15 37 21,129 11,472 6661 17,224

http://broadinstitute.github.io/picard
http://broadinstitute.github.io/picard
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Read counts supporting each allele were extracted 
directly from the aligned reads stored in the BAM files, 
using a pile-up function, to avoid biases towards the 
reference allele introduced by GATK when applied on 
low-coverage WGS data [47]. This pipeline uses the 
pysam software (version 0.13.0; https:// github. com/ 
pysam- devel opers/ pysam), which is a wrapper around 
the htslib program and the samtools package [48]. Read 
counts were extracted for all biallelic variants, after fil-
tering out variants found in less than three sequenced 
individuals and variants in potential repetitive regions 
(defined as variants that had mean depth values 3 
times greater than the average realized coverage) with 
VCFtools [49]. This pipeline delivered a total of 55.6 
million SNPs (19.6 to 31.1 million within each line) and 
10.2 million indels (4.1 to 5.6 million within each line). 
A more complete description of the variation across the 
lines is provided in [50].

Genotype imputation
Genotypes were jointly called, phased, and imputed for 
a total of 483,353 pedigree-related individuals using the 
‘hybrid peeling’ method implemented in AlphaPeel [51, 
52]. This method uses all available marker array and 
WGS data. Imputation was performed separately for 
each line using complete multi-generational pedigrees, 
with 21,129 to 122,753 individuals per line (Table 1). We 
have previously published reports on the accuracy of 
imputation in the same populations using this method 
[38]. The estimated average allele dosage correlation (cor-
relation between the real genotype and the imputed allele 
dosage) by individual was 0.94 (median: 0.97) [38]. Indi-
viduals with a low predicted imputation accuracy were 
removed before further analyses. An individual was pre-
dicted to have a low imputation accuracy when it or all 
of its grandparents were not genotyped with a marker 
array or when it had a low degree of connectedness to the 
rest of the population (defined as the sum of coefficients 
of pedigree-based relationships between the individual 
and the rest of individuals). These criteria were based 
on the analysis of imputation accuracy in simulated and 
empirical data [38]. In total, genotype data on 396,100 
individuals remained, with 17,224 and 104,661 individu-
als per line (Table  1). The expected average individual-
wise dosage correlation of the remaining individuals was 
0.97 (median: 0.98) [38]. We also excluded variants with 
a minor allele frequency lower than 0.023 from further 
analyses, because their estimated variant-wise dosage 
correlations were lower than 0.90 [38]. After imputation, 
32.8 million variants (14.5 to 19.9 million within each 
line) remained for downstream analyses, of which 9.9 
million segregated across all seven lines.

Traits
We analysed phenotypic data on eight complex traits 
that are commonly included in selection objectives of 
pig breeding programmes: average daily gain (ADG), 
backfat thickness (BFT), loin depth (LD), average daily 
feed intake (ADFI), feed conversion ratio (FCR), total 
number of piglets born (TNB), litter weight at weaning 
(LWW), and return to oestrus within 7 days after wean-
ing (RET, binary trait). Most pigs with records were 
born during the 2008–2020 period. Breeding values 
were estimated by line with a linear mixed model that 
included polygenic and non-genetic (as relevant for 
each trait) effects. Deregressed breeding values (dEBV) 
were derived from the estimated breeding values for 
each trait following the method of VanRaden et al. [53]. 
Only individuals that had an own phenotype for the 
trait were retained for further analyses. The numbers of 
records for each trait used in the analyses of each line 
are provided in Table 2.

Training and testing sets
We split the individuals in each line into training and 
testing sets. The testing sets were defined as individu-
als from full-sib families from the last generation of 
the pedigree (i.e., individuals that did not have any 
progeny of their own). Only families with a minimum 
of five full-sibs were considered. The training set was 
defined as all individuals that had a pedigree coefficient 
of relationship lower than 0.5 with any individual in the 
testing set. This design was chosen to mimic a realis-
tic situation in which breeding programmes evaluate 
selection candidates that are available in a selection 
nucleus at any given time.

To assess the effect of the size of the training set on pre-
diction accuracy, we created training sets with a reduced 
number of phenotype records for the three largest lines 
for the three traits with the largest number of records. 
We did this by removing the oldest animals, such that 
approximately the most recent 10, 20, or 35 to 45 thou-
sand phenotype records remained in each of the reduced 
training sets.

Due to the computational requirements of the analyses 
(mainly for the preselection of the WGS variants to be 
included in the prediction equations), we could not rep-
licate every analysis to assess the variability of the results. 
However, we did perform replicated validation analyses 
in the largest, one intermediate, and the smallest lines for 
two traits with a large and small number of phenotype 
records. To do this, we randomly split the testing sets 
into five subsets, with each full-sib family represented 
exclusively in one of the subsets. Training sets for each 
replicate were defined as for the general case.

https://github.com/pysam-developers/pysam
https://github.com/pysam-developers/pysam
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Genome‑wide association study
To provide an association-based criterion to preselect 
variants for genomic prediction, we performed a single-
SNP GWAS for each trait and line. This step included 
only the individuals in the training set. We fitted a uni-
variate linear mixed model that accounted for genomic 
relationships as:

where y is the vector of dEBV, xi is the vector of geno-
types for the i th variant coded as 0 and 2 if homozygous 
for either allele or 1 if heterozygous, βi is the allele substi-
tution effect of the i th variant on the trait, u ∼ N (0,Kσ2u) 
is the vector of polygenic effects with covariance matrix 
equal to the product of the polygenic additive genetic 
variance σ2u and a genomic relationship matrix K , and e is 
a vector of uncorrelated residuals. Due to computational 
limitations, the genomic relationship matrix K was cal-
culated using only imputed genotypes from the marker 
array. We used the FastLMM software [54, 55] to fit the 
model.

Within‑line genomic prediction
To test whether variants from the WGS data could pro-
vide greater genomic prediction accuracy than the 
marker array data, we tested genomic prediction using 
variants from the marker array, from the WGS, or from 
both. The marker array data (also referred to as ‘Chip’) 

y = xiβi + u + e,

was set as the benchmark for prediction accuracy. It con-
tained all ~ 40k variants in the marker array. For WGS, 
we preselected sets of variants because currently avail-
able methods for genomic prediction are not yet capable 
of handling datasets as large as the complete WGS with-
out exorbitant computational resources. We tested differ-
ent alternative strategies for preselecting variants for the 
prediction model based on the GWAS results:

(1) Top40k: To mimic the number of variants in ‘Chip’, 
we preselected the variants with the lowest p-value 
(not necessarily below the significance threshold) 
in each of consecutive non-overlapping 55-kb win-
dows along the genome. In addition, to test the 
impact of variant density on prediction accuracy, 
we preselected the top 10k, 25k, 75k, or 100k vari-
ants based on the same criterion.

(2) ChipPlusSign: Only significant variants (p ≤  10–6) 
were preselected from the WGS data and merged 
with those in ‘Chip’. When a 55-kb window con-
tained more than one significant variant, only the 
variant with the lowest p-value was selected as a 
proxy to reduce the preselection of multiple sig-
nificant variants that tag the same causal variant. 
When a significant variant from WGS data was 
already included in the marker array, it was con-
sidered only once and in the rare cases of genotype 
discordance between the WGS and marker array 
data, the genotype was replaced with the mean gen-

Table 2 Number of phenotype records by trait and line for the training and testing datasets

ADG average daily gain, BFT backfat thickness, LD loin depth, ADFI average daily feed intake, FCR feed conversion ratio, TNB total number of piglets born, LWW litter 
weight at weaning, RET return to oestrus 7 days after weaning
* Included in multi‑line scenarios, but excluded in within‑line scenarios because of the limited size of the testing set

Trait Set A B C D E F G

ADG Training 77,811 54,709 48,219 45,693 31,918 24,046 13,479

Testing 9435 8387 6977 4789 3019 1808 1572

BFT Training 70,529 52,910 47,512 42,636 31,127 21,892 13,300

Testing 8560 7957 6747 4301 2936 1602 1568

LD Training 75,117 54,537 48,054 43,517 31,987 24,154 13,303

Testing 9021 8415 6995 4411 3024 1807 1570

ADFI Training 20,535 8866 8235 11,573 11,930 4000 4457

Testing 1358 638 802 641 478 97* 364

FCR Training 19,805 8572 7857 11,378 11,804 3900 4364

Testing 1328 624 775 624 477 97* 360

TNB Training 12,250 9315 8438 7700 5834 – 2865

Testing 254 428 400 23* 125* – 98*

LWW Training – 7884 6251 – – – 2505

Testing – 246 220 – – – 47*

RET Training – 5928 5496 – – – 1481

Testing – 332 282 – – – 70*
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otype value in that line. On average, 309 significant 
variants were identified per trait and line (range: 23 
to 1083; Table 3) and merged with those in ‘Chip’.

Genomic prediction was performed by fitting a univar-
iate model with BayesR [56, 57], which uses a mixture 
of normal distributions as the prior for variant effects, 
including one distribution that sets the variant effects 
to zero. The model was:

where y is the vector of dEBV, 1 is a vector of ones, µ is 
the general mean, X is a matrix of variant genotypes, β 
is a vector of variant effects, and e is a vector of uncor-
related residuals. The prior variance of the variant effects 
in β had four components with means equal to zero and 
variances σ

2
1
= 0 , σ

2
2
= 0.0001σ2g , σ

2
3
= 0.001σ2g , and 

σ
2
4
= 0.01σ2g , where σ2g is the total genetic variance. We 

used a uniform and almost uninformative prior for the 
mixture distribution with the total genetic variance re-
estimated in every iteration. We used a publicly available 
implementation of BayesR (https:// github. com/ synth eke/ 
bayesR; accessed on 30 April 2021), with default settings. 
Prediction accuracy was calculated in the testing set as 
the correlation between the predicted genomic breed-
ing values and the dEBV. Bias (inflation/deflation) of 
the prediction accuracy was calculated as the regression 
coefficient of the dEBV on the predicted genomic breed-
ing values. For ease of comparison between traits and 
lines, the difference between prediction accuracy based 
on WGS and marker array data was calculated and ana-
lysed by fitting linear models with the size of the training 
set as a covariate and trait and line as fixed effects when 
appropriate.

y = 1µ+ Xβ+ e,

Multi‑line genomic prediction
We considered multi-line scenarios in which the training 
set was formed by merging the training sets that had been 
defined for each line. All analyses were performed as for 
the within-line scenarios but with line as an additional 
effect in the prediction model. In the multi-line scenarios, 
the benchmark genomic prediction was obtained using 
all variants from the marker array that passed quality 
control and were imputed for at least one line (referred to 
as ‘ML-Chip’). For ease of computation, the strategies for 
preselection of variants from WGS were applied only to 
the subset of 9.9 million variants that had been called and 
imputed in all seven lines. Thus, we defined the variant 
sets ‘ML-Top40k’ and ‘ML-ChipPlusSign’ by preselecting 
variants following the same criteria as in the within-line 
scenarios, but using a multi-line GWAS with line as an 
additional effect. For ML-ChipPlusSign, 60 to 7247 sig-
nificant variants were identified per trait (Table  3) and 
merged with those in ML-Chip. For comparison pur-
poses, genomic prediction accuracy was calculated sepa-
rately for the testing set of each line.

Results
Within‑line genomic prediction accuracy
Whole-genome sequence data improved genomic pre-
diction accuracy compared to marker array data in some 
scenarios, especially when there was a sufficiently large 
training set and when an appropriate set of WGS vari-
ants was preselected. Figure 1 shows the prediction accu-
racy for the three traits and three lines with the largest 
training sets using the two different sets of WGS variants. 
Results for the rest of traits and lines, as well as results for 
the bias, are in Additional file 2: Fig. S2. For BFT in line 
B, compared to the marker array results, the two tested 
sets of WGS variants increased prediction accuracy by 
0.054 (+9.8%) for Top40k and by 0.043 (+7.7%) for Chip-
PlusSign. However, the performance of WGS was not 

Table 3 Number of significant variants from the whole‑genome sequence data that were added to the marker array to create the 
ChipPlusSign set of variants

ADG average daily gain, BFT backfat thickness, LD loin depth, ADFI average daily feed intake, FCR feed conversion ratio, TNB total number of piglets born, LWW litter 
weight at weaning, RET return to oestrus 7 days after weaning

Trait A B C D E F G Multi‑line

ADG 646 581 424 498 279 219 143 4731

BFT 1083 758 664 518 1030 218 237 6149

LD 633 579 458 518 222 215 43 7247

ADFI 145 224 169 23 183 – 119 767

FCR 198 224 162 95 56 – 134 1369

TNB 71 117 161 – – – – 248

LWW – 32 73 – – – – 480

RET – 184 31 – – – – 60

https://github.com/syntheke/bayesR
https://github.com/syntheke/bayesR
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robust and differed by trait and line, and even between 
replicates for the same trait and line (see Additional file 3: 
Fig. S3 and Additional file 4: Table S1), often leading to 
no improvement in prediction accuracy or even reduced 
prediction accuracy relative to the marker array data. For 
instance, Top40k reduced prediction accuracy by 0.020 
(–3.4%) for ADG in line C and ChipPlusSign reduced 
accuracy by 0.020 (–2.2%) for LD in line C. Using WGS 
data reduced bias compared to the marker array data in 
only some cases.

Results within trait and line (Fig. 2) confirmed that the 
impact of the use of WGS data on genomic prediction 
accuracy depends on the line, but also showed that the 
capacity of WGS variants to improve the genomic pre-
diction accuracy compared to those of the marker arrays 
tended to increase with size of the training set. Jointly 
analysing the results for ADG, BFT, and LD (Fig. 3), we 
found significant positive regression coefficients of the 
difference in prediction accuracy based on WGS variants 
versus marker array variants on training set size in lines 
A (only Top40k) and B (all sets of WGS variants) but not 
in line C, for which the regression coefficient was not sta-
tistically significant for any set of WGS variants. When 
computed considering the three lines jointly (Fig.  3d), 

the regression coefficient of the difference in prediction 
accuracy on the training set size was 0.6 ×  10–6 per indi-
vidual (p < 0.001) for Top40k and 0.3·10–6 per individual 
(p = 0.017) for ChipPlusSign. This was, at least partly, 
driven by the smaller number of significant associations 
that were detected with smaller training sets. For Chip-
PlusSign, with a training set of 20k individuals or less, 
118 to 287 significant variants were added to the marker 
array; with a training set of 35k to 45k individuals, 288 
to 709 significant variants were added; and with all avail-
able individuals in the training set, 424 to 1083 signifi-
cant variants were added. Thus, if the marker array was 
augmented with the significant variants detected with all 
available individuals (ChipPlusSign*; Figs.  2 and 3), the 
use of WGS data yielded the same prediction accuracy 
than the marker array data or higher in most scenarios 
even when the set for training the prediction equation 
was smaller.

Figures 4 and 5 show the difference in prediction accu-
racy using Top40k and ChipPlusSign compared to using 
marker array variants against the size of the training set 
that was available for each trait in each of the lines. We 
observed large variability for the difference in prediction 
accuracy, especially when the training set was small. This 

Fig. 1 Genomic prediction accuracy for each set of variants for the ADG, BFT, and LD traits in the three largest lines. Dashed line at value of marker 
array (Chip) as a reference. Values indicate relative differences to marker array
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variability was larger for Top40k than for ChipPlusSign, 
such that the shrinkage of the variation was more notice-
able in ChipPlusSign as the training set size increased. 
Within trait and line, the variability across replicates 
was also larger for Top40k than for ChipPlusSign (see 
Additional file 4: Table S1). Gains in prediction accuracy 
were low-to-moderate in the most favourable cases. In 
the most unfavourable cases, we observed large losses 
in prediction accuracy for Top40k but more limited 
losses for ChipPlusSign with moderate training set sizes. 
When data from all traits and lines were jointly ana-
lysed, the regression coefficient of the difference in pre-
diction accuracy on size of the training set was positive 
but had stronger statistical evidence for ChipPlusSign 
(b = 0.5 ×  10–6 per individual; p = 0.032;  R2 for each trait 
between 0.06 and 0.75) than for Top40k (b = 0.5 ×  10–6 
per individual; p = 0.24;  R2 for each trait between 0.00 
and 0.20).

We observed diminishing increases in accuracy when 
we increased the density of the variants used in predic-
tion. Increasing the number of variants from 40k in 
Top40k to 75k yielded small improvements in genomic 
prediction accuracy compared to Top40k, but increases 
up to 100k variants provided smaller or null additional 
gains (see Additional file 5: Fig. S4).

Multi‑line genomic prediction accuracy
The accuracy of genomic prediction trained across 
multi-line datasets was systematically lower than for 
the within-line genomic prediction scenarios (see 
Additional file  6: Fig. S5). Nonetheless, when using 
multi-line training sets, using the ML-ChipPlusSign 
variants in general increased genomic prediction accu-
racy relative to using the marker array variants (ML-
Chip; Fig. 6). For the traits that accumulated the largest 
multi-line training sets (i.e., ADG, BFT, and LD), the 
improvements in prediction accuracy for each line 
seemed unrelated to the number of individuals that that 
line contributed to the multi-line training set. However, 
for traits that accumulated smaller multi-line train-
ing sets (i.e., ADFI and FCR), using ML-ChipPlusSign 
only improved prediction accuracy for the lines that 
contributed more individuals to the multi-line train-
ing set and reduced prediction accuracy for the lines 
that contributed less individuals to the multi-line train-
ing set. Therefore, as for the within-line scenarios, the 
greatest improvements in prediction accuracy from the 
use of WGS data were achieved for the largest lines, 
although using ML-ChipPlusSign in the multi-line sce-
narios also improved prediction accuracy compared to 
using ML-Chip for some traits and lines for which no 

Fig. 2 Genomic prediction accuracy with the marker array (Chip) or with preselected WGS data (Top40k, ChipPlusSign, and ChipPlusSign*) with 
varying training set sizes for the ADG, BFT, and LD traits in the three largest lines. In ChipPlusSign*, variants are preselected based on associations 
tested using the largest training set available for each trait and line
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improvements were observed in the within-line sce-
narios, including numerically small lines (Fig.  7). In 
contrast, results for ML-Top40k were not robust across 
traits (see Additional file 7: Fig. S6).

Discussion
Our results showed that the use of WGS data has some 
potential to improve genomic prediction accuracy 

Fig. 3 Effect of training set size on the genomic prediction accuracy for each set of preselected WGS variants in the three largest lines. The 
difference between each set of preselected WGS variants (Top40k, ChipPlusSign, and ChipPlusSign*) and the marker array (Chip) is shown. Red 
dashed line at ‘no difference’. Regression coefficient (b) and p‑value of training set size is provided, as well as the coefficient of determination  (R2) of 
the model. Results for traits ADG, BFT, and LD were jointly analysed, and the linear model included the trait effect (panels a to c) or the trait and line 
effects (panel d)



Page 10 of 18Ros‑Freixedes et al. Genetics Selection Evolution           (2022) 54:65 

Fig. 4 Genomic prediction accuracy based on the Top40k variants. The difference between the Top40k and marker array is shown for all traits and 
lines (left) or by trait (right). Red dashed line at ‘no difference’. Regression coefficient (b) and p‑value of training set size is provided, as well as the 
coefficient of determination  (R2) of the model. The linear model for the joint analyses included the trait effect

Fig. 5 Genomic prediction accuracy based on the ChipPlusSign variants. The difference between the ChipPlusSign and marker array is shown for all 
traits and lines (left) or by trait (right). Red dashed line at ‘no difference’. Regression coefficient (b) and p‑value of training set size is provided, as well 
as the coefficient of determination  (R2) of the model. The linear model for the joint analyses included the trait effect
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Fig. 6 Genomic prediction accuracy based on the ML‑ChipPlusSign variants. The difference between ML‑ChipPlusSign and marker array (ML‑Chip) 
is shown for all traits and lines (left) or by trait (right). Red dashed line at ‘no difference’. Regression coefficient (b) and p‑value of training set size is 
provided, as well as the coefficient of determination  (R2) of the model. The linear model for the joint analyses included the trait effect

Fig. 7 Comparison of the difference in genomic prediction accuracy in the multi‑line scenarios (between ML‑ChipPlusSign and ML‑Chip) and in the 
within‑line scenarios (between ChipPlusSign and Chip) for all traits and lines. Red dashed line at ‘no difference’. Blue dashed line is the bisector
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compared to marker arrays in intensely selected pig lines, 
but its use with current implementations of genomic pre-
diction should be carefully evaluated. The small and non-
robust improvements in accuracy that were observed 
indicate that the strategies for analysing the WGS data 
that we tested were likely suboptimal. The more favour-
able results for WGS variants in the largest training sets 
indicated that we might have not reached the critical 
mass of data that is needed to leverage the potential of 
WGS, especially in scenarios where genomic prediction 
with marker arrays is already yielding high accuracy. The 
results from several traits and lines with different train-
ing set sizes allowed us to identify the most favourable 
scenarios for genomic prediction with WGS. In the fol-
lowing, we will discuss (1) the prediction accuracy that 
we achieved with WGS data compared to the commercial 
marker array data and the scenarios in which WGS may 
become beneficial, (2) the potential pitfalls for the effec-
tive use of WGS for genomic prediction and the need for 
optimised pipelines for generating and analysing WGS 
datasets, and (3) the suitability of WGS data for genomic 
prediction with current implementations of genomic 
prediction.

Prediction accuracy with whole‑genome sequence data
We compared the genomic prediction accuracy based on 
the current marker array (Chip) with that based on sets 
of preselected WGS variants such that the number of 
variants remained similar across sets. Improvements in 
prediction accuracy are expected to be limited if current 
marker arrays are already sufficiently dense to capture 
a large proportion of the genetic diversity in intensely 
selected livestock populations because such popula-
tions typically have small effective population sizes [12, 
17]. Nevertheless, modest improvements from the use of 
WGS data for genomic prediction within line have been 
achieved under certain scenarios across several stud-
ies [17–20, 29, 31]. In our study, the most robust results 
across traits and lines were obtained with the ChipPlus-
Sign variant sets, where the marker array was augmented 
with WGS variants that had statistically significant asso-
ciations to the trait. Results from simulated traits (see 
Additional file  8 and Additional file  9: Figs. S7 and S8) 
confirmed the greater robustness of genomic predictions 
based on ChipPlusSign compared to Top40k that was 
observed for the empirical traits. This is consistent with 
previous reports that showed an improvement in predic-
tion accuracy under similar approaches for preselecting 
WGS variants [28–31].

Using ChipPlusSign, we augmented the marker array 
with 23 to 1083 significant variants preselected from 
WGS data across the different scenarios. In the most suc-
cessful scenarios, a minimum of around 200 significant 

variants were added and prediction accuracy improved 
by 0.025 on average with training sets of around 80k 
individuals. Other studies suggested additions of a larger 
number of variants. In Hanwoo cattle, adding around 
12k variants (3k with the lowest p-values for each of four 
traits) to a custom 50k marker array increased accuracy 
by up to ~ 0.06 [31]. In sheep, adding around 400 variants 
(preselected by GWAS as those that were significantly 
associated within windows identified by regional herit-
ability mapping) to a 50k marker array increased accu-
racy by 0.09 [30]. Other studies expressed the results as 
reliabilities and also found improvements of reliability 
by adding larger numbers of variants to marker arrays. 
In Nordic cattle, adding 1623 variants (preselected by 
aggregating 3 to 5 tag variants for each of the top 5 to 15 
quantitative trait loci (QTL) per trait and breed) to a 50k 
marker array increased reliability by up to 0.05 [28], but a 
similar approach produced negligible improvements for 
traits with low heritability [58]. In Holstein cattle, add-
ing around 16k variants (preselected based on the size of 
allele substitution effect estimates) to a 60k marker array 
increased reliability on average by 0.027 (up to 0.048) 
[29].

The only modest increases in accuracy obtained with 
ChipPlusSign and Top40k compared to the marker array 
could also be a consequence of the difficulty for fine-
mapping causal variants through GWAS on WGS data. 
Theoretically, inclusion of all causal variants associated 
with a trait in the marker array should improve genomic 
prediction accuracy [59]. Although WGS data allow the 
detection of a very large number of associations, prob-
lems such as false positives or p-value inflation also 
become more severe, so that the added noise might offset 
the detected signal. For instance, results in cattle showed 
that GWAS on WGS did not detect clearer associated 
regions than marker arrays and failed to capture QTL for 
genomic prediction [13], because the effects of poten-
tial QTL were spread across multiple variants. Genomic 
prediction using WGS variants that were preselected 
based on GWAS performed better for traits with simple 
genetic architectures based on results from simulated 
traits (see Additional file  9:Figs. S7 and S8), for which 
traits with a high heritability and small number of quan-
titative trait nucleotides (QTN) were more likely to show 
larger improvements in prediction accuracy when using 
WGS compared to marker arrays. This is consistent with 
expectations and previous simulation results [60] that 
indicated that the benefit of WGS for genomic predic-
tion is limited by the number and size of QTN. Therefore, 
for largely polygenic traits (as most traits of interest in 
livestock production), training sets need to be very large 
before the use WGS data can increase genomic predic-
tion accuracy [60].
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The advantage of using WGS may also be limited by the 
small effective population size of livestock populations 
under selection [61] and by the current training set sizes, 
especially in scenarios where marker arrays are already 
yielding high genomic prediction accuracy [13, 18]. The 
use of WGS in multi-line training sets could be particu-
larly beneficial because they allow a larger training set 
with a low level of pairwise relationships among individ-
uals. Indeed, previous simulations suggested that WGS 
data might be the most beneficial with multi-breed refer-
ence panels [62], especially for numerically small popula-
tions. Our results with a multi-line training set indicated 
that WGS can improve prediction accuracy by up to 0.04. 
However, in general, the multi-line predictions were less 
accurate than those obtained for within-line scenarios. In 
our multi-line scenarios, we only used variants that seg-
regated across all seven lines. We observed that popula-
tion-specific variants accounted only for small fractions 
of the genetic variance [50] and it seems unlikely that 
they would contribute much to genomic prediction accu-
racy across breeds. Another possible reason for the lower 
accuracy of multi-line predictions is that allele substitu-
tion effects of the causal mutations may differ between 
lines. This can be caused by differences in allele frequen-
cies, contributions of non-additive effects and differ-
ent genetic backgrounds, or even gene-by-environment 
interactions, among others [22, 63].

We observed that the robustness of genomic prediction 
with WGS data across traits and lines was low, result-
ing in a drop in prediction accuracy in some scenarios. 
Previous studies have shown that using the same data for 
preselecting variants through GWAS and for training the 
prediction equation can reduce the accuracy of genomic 
predictions and bias the resulting predicted genomic 
breeding values [15, 64]. We observed no systematic 
increase in accuracy or bias when randomly splitting the 
training set into two distinct subsets, one for GWAS to 
preselect the predictor variants and the other for training 
the prediction equation (see Additional file  10: Fig. S9). 
One possible reason for this result is that the two subsets 
were not strictly independent because they belonged to 
the same population. The reduction in the number of 
individuals available for training may also have negatively 
affected genomic prediction accuracy.

We did not directly evaluate the persistence of the 
accuracy of genomic predictions across generations, but 
previous studies with empirical data found that the use 
of WGS data did not increase the persistence of accuracy 
[13]. We expect that persistence of accuracy will only 
improve when causal variants can be successfully identi-
fied and their non-additive effects are accounted for.

Potential pitfalls for the effective use of WGS for genomic 
prediction
Effective use of WGS for genomic prediction can only be 
achieved when many other steps are completed to pro-
duce genotype data at the whole-genome level. Each of 
these steps has potential pitfalls that can limit the success 
of using WGS. This includes optimization of the choice 
of individuals to sequence, of the bioinformatic pipeline 
to call variants, of the imputation of the WGS, and of fil-
tering of variants. When combined with the multiplicity 
of strategies to preselect variants for genomic prediction 
(which is unavoidable with current datasets, genomic 
prediction methods, and computational resources), the 
whole process includes many variables that can affect the 
final result and that are not yet well understood. There-
fore, a much greater effort for optimising the whole 
process is required. Here, we tested relatively simple 
approaches to evaluate how they performed with large 
WGS datasets. We have previously discussed what, in 
our opinion, are the main pitfalls of our approach for 
selection of individuals to sequence [52] and the biases 
that may appear during processing of sequencing reads 
[47]. Here, we will focus our discussion on imputation of 
WGS data and its use for genomic prediction.

Imputation accuracy
Imputation of WGS data is particularly challenging 
because typically a very large number of variants need to 
be imputed for a very large number of individuals from 
few sequenced individuals. As a consequence, genotype 
uncertainty can be high [19, 25, 65, 66]. Accuracy of the 
imputed WGS data is one of the main factors that may 
limit its potential for genomic prediction. In a simula-
tion study, van den Berg et al. [25] quantified the impact 
of imputation errors on genomic prediction accuracy 
and showed that prediction accuracy decreases as errors 
accumulate, especially in the testing set.

We have assessed the accuracy of our imputation 
approach elsewhere [38, 52] and recommended that ~ 2% 
of the population should be sequenced in intensely 
selected populations. In our study, line D was the line for 
which genomic prediction accuracy using Top40k per-
formed the worst compared to the marker array. In this 
line, only 0.9% of the individuals in the population had 
been sequenced and therefore lower imputation accuracy 
could be expected. Although there was not enough evi-
dence for establishing a link between sequencing effort 
and genomic prediction accuracy, we recommend cau-
tious design of a sequencing strategy that is suited to the 
intended imputation method [52].
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Genomic prediction accuracy could be improved by 
accounting for genotype uncertainty of the imputed 
WGS. In that case, it could be advantageous to use allele 
dosages rather than best-guess genotypes [66], although 
most current implementations of genomic prediction 
methods cannot handle such information.

Preselection of predictor variants
Using WGS data to simply increase the number of vari-
ants in the genomic prediction analyses does not improve 
genomic prediction accuracy [16, 19, 22]. Because of the 
large number of variants in WGS data, there is a need to 
remove uninformative variants [22, 30, 62, 65, 67]. The 
most predictive variants are expected to be variants that 
are causal or that are at least informative about the causal 
variants, which depends on their distance to the causal 
variants [68]. Variants that are in weak linkage disequi-
librium with causal mutations have a ‘dilution’ effect, i.e., 
they add noise and can limit prediction accuracy [22, 
30, 67]. However, if too stringent filters are applied dur-
ing preselection of predictor variants, true causal vari-
ants may be removed, which would reduce persistence of 
accuracy across generations and across populations [62, 
69]. For instance, the impact of removing variants with a 
low minor allele frequency depends on the minor allele 
frequency of the causal variants and the distance between 
preselected and causal variants [68]. Removing causal 
or informative variants is expected to negatively affect 
multi-line or multi-breed prediction.

A popular strategy to preselect variants for the predic-
tion model is based on association tests. Genome-wide 
association studies on WGS data are expected to con-
firm associations that were already detected with marker 
arrays but also identify novel associations (e.g., [35, 70]; 
(see Additional file  11: Fig. S10)). However, our empiri-
cal GWAS results illustrate how the noise of GWAS 
with WGS data limits the fine-mapping of the associated 
regions and the preselection of variants for genomic pre-
diction due to the pervasiveness of linkage disequilibrium 
(see Additional file  11: Fig. S10) and how GWAS with 
WGS data can be affected by false positives in a more 
severe way than GWAS with marker arrays, especially for 
highly polygenic traits (as shown by results using simu-
lated traits (see Additional file 12: Table S2).

Multi-breed GWAS [4] and meta-analyses [71] are 
suitable alternatives for reaching much larger popula-
tion sizes and for combining results of populations with 
diverse genetic backgrounds. Multi-breed GWAS can 
be more efficient to identify informative variants than 
single-breed GWAS, which may benefit even prediction 
within lines [72]. Because the signal of some variants may 
go undetected for some traits but not for other correlated 
traits, combining GWAS results from several traits can 

also help to identify weak or moderate associations [23]. 
We did not test whether combining the significant mark-
ers from the different single-trait GWAS yielded greater 
improvements in prediction accuracy [28, 31]. Multi-trait 
GWAS could be more suited for that purpose [70, 73]. To 
improve fine-mapping, other GWAS models that incor-
porate biological information have been proposed (e.g., 
functional annotation [74] or metabolomics [75]).

Several methods to improve variant preselection for 
genomic prediction have been proposed. VanRaden et al. 
[29] suggested that preselecting variants based on the 
genetic variance that they contribute rather than the sig-
nificance of the association could be beneficial, because 
the former would indirectly preselect variants with a 
higher minor allele frequency. Other authors proposed 
preselection of variants using statistics such as the fixa-
tion index  (FST) between groups of individuals with high 
and low phenotype values to avoid the negative impact of 
spurious associations [67].

Genomic prediction models and methods
It is also likely that genomic prediction models, estima-
tion methods, and their implementations need to be 
improved to leverage the potential of WGS data. This is 
an active area of research and multiple novel method-
ologies have been proposed over the last years. Some 
examples are a combination of subsampling and Gibbs 
sampling [76] and a model that simultaneously fits a 
GBLUP term for a polygenic effect and a BayesC term for 
variants with large effects based on the model (BayesGC) 
[24]. Testing alternative models and methods for genomic 
prediction was outside the scope of this study. However, 
together with refinements in the preselection of variants, 
it remains an interesting avenue for further optimisation 
of the analysis pipeline for WGS data.

Some of the most promising new methods for genomic 
prediction incorporate prior biological information into 
the models. One such method is BayesRC [21], which 
extends BayesR by estimating the proportion of variants 
effects that are drawn from each normal distribution 
separately for each of several classes of variants defined 
based on a priori biological information or other criteria 
[17, 20]. Similarly, genomic feature BLUP (GFBLUP) [77] 
could be used to incorporate prior biological information 
from either QTL databases or GWAS as genomic features 
[19, 34, 65]. The multi-breed multi-genomic relationship 
matrices genomic prediction model (MBMG) [26], which 
fits two genomic relationship matrices according to prior 
biological information, has also been proposed for multi-
breed scenarios to improve genomic prediction in small 
populations. Finally, haplotype-based models have also 
been shown to provide greater prediction accuracy with 
WGS data than variant-based models in pigs [78] and 
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cattle [79]. However, the uptake of such models has been 
limited so far due to additional complexity of, for exam-
ple, defining haplotype blocks.

Suitability of whole‑genome sequence data for genomic 
prediction
The small improvements in genomic prediction accu-
racy that we achieved with WGS data reflect the lim-
ited dimensionality of genomic information in intensely 
selected livestock populations [61], which typically have 
small effective population sizes, such that marker arrays 
already capture a large proportion of their independent 
chromosome segments. Thus, the use of WGS data in 
current implementations of genomic prediction should 
be carefully evaluated against its cost, especially given 
the large size of the WGS datasets that are required. 
Sequencing costs are expected to continue to decrease 
and therefore large WGS datasets will become more 
affordable in time, while efforts to develop and optimise 
scalable and accurate pipelines for WGS-based data gen-
eration, storage, and analysis are on-going (e.g., [80, 81]). 
These advances, together with a finer knowledge of the 
genetic architecture of traits empowered by WGS, could 
allow a case-by-case refinement of genomic prediction. 
However, to date, the low robustness of the results for 
complex traits discourages the generalised use of WGS 
data for traits that are already accurately predicted by 
conventional means.

Conclusions
Our results show that the use of WGS data has some 
potential to improve genomic prediction accuracy com-
pared to marker arrays in intensely selected pig lines. 
However, the prediction accuracy with a given set of 
preselected WGS variants was not robust across traits 
and lines and the improvements in prediction accuracy 
compared to marker arrays were generally small. The 
most favourable results for WGS were obtained when 
the largest training sets were available and used to 
preselect variants with statistically significant associa-
tions to the trait for augmenting the established marker 
array. With this method and training sets of around 80k 
individuals, average improvements of genomic predic-
tion accuracy of 0.025 were observed in within-line 
scenarios. A combination of larger training sets and 
optimised pipelines for generating and analysing WGS 
datasets could further improve genomic prediction 
accuracy with the use of WGS data. The whole strategy 
for generating WGS data at the population level must 
be carefully stress-tested and further optimised. How-
ever, with the current implementations of genomic pre-
diction, the use of WGS should be carefully evaluated 

on a case-by-case basis against the cost of generating 
WGS data on a large scale.
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