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Abstract
Key message Established spatial models improve the analysis of agricultural field trials with or without genomic data 
and can be fitted with the open-source R package INLA.
Abstract The objective of this paper was to fit different established spatial models for analysing agricultural field trials using 
the open-source R package INLA. Spatial variation is common in field trials, and accounting for it increases the accuracy of 
estimated genetic effects. However, this is still hindered by the lack of available software implementations. We compare some 
established spatial models and show possibilities for flexible modelling with respect to field trial design and joint modelling 
over multiple years and locations. We use a Bayesian framework and for statistical inference the integrated nested Laplace 
approximations (INLA) implemented in the R package INLA. The spatial models we use are the well-known independent 
row and column effects, separable first-order autoregressive ( AR1⊗ AR1 ) models and a Gaussian random field (Matérn) 
model that is approximated via the stochastic partial differential equation approach. The Matérn model can accommodate 
flexible field trial designs and yields interpretable parameters. We test the models in a simulation study imitating a wheat 
breeding programme with different levels of spatial variation, with and without genome-wide markers and with combining 
data over two locations, modelling spatial and genetic effects jointly. The results show comparable predictive performance 
for both the AR1⊗ AR1 and the Matérn models. We also present an example of fitting the models to a real wheat breeding 
data and simulated tree breeding data with the Nelder wheel design to show the flexibility of the Matérn model and the R 
package INLA.

Introduction

In plant breeding, the main goal is to select individuals with 
the best performance as new market varieties or to select 
individuals with the best genetic potential as parents of 
the next generation. To this end, breeders use field trials to 
estimate genetic and breeding values of individuals. Spatial 
variation is common in such trials, and if not accounted for 
it can impact the estimation. There can be several sources of 
spatial variation in a field trial, such as changes in fertility, 
watering and soil depth. Other sources of spatial variation 
that often occur are external influences due to the way plots 
are treated, for example the effect of drilling, spraying and 
harvesting. This extraneous variation can be handled by the 
addition of further effects in a model, such as column or 
row effects.

Traditionally, spatial variation has been accounted 
for by using control plots, replications and blocks. These 
approaches do not account for fine-grained spatial vari-
ability, in particular they do not account for dependency 
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between neighbouring blocks and plots within blocks, which 
can affect the estimation of genetic values. Several models 
have been proposed to model spatial variation. One of the 
most widely used is the separable first-order autoregres-
sive ( AR1⊗ AR1 ) model introduced by Cullis and Glee-
son (1991) and extended by Gilmour et al. (1997). It has 
been shown to fit well in many trials (e.g. Gilmour et al. 
1997; Rodríguez-Álvarez et al. 2018). There are other mod-
els that can correct for spatial variation. For example, there 
is a whole class of Gaussian intrinsic models based on the 
seminal work of Besag and Higdon (1999), which have not 
gained much traction in plant breeding applications. Much 
has also been done on smoothing techniques, among which 
the recent SpATS approach explores two-dimensional 
smooth surfaces through the use of tensor product P-splines 
(Rodríguez-Álvarez et al. 2018). Nearest neighbour models 
are reviewed by Piepho et al. (2008), and the use of spatial 
kernels is also common (Elias et al. 2018; Mao et al. 2019).

Most of the popular spatial methods in plant breeding use 
lags between plot locations as a distance, while continuous 
spatial variation is not commonly addressed. If observations 
are irregularly spaced, the autoregressive and other models 
assuming equal spacing are not applicable. However, there 
are extensions to the autoregressive model, using covariance 
functions known as the power model and the exponential 
model (Schabenberger and Gotway 2017). The kernel meth-
ods presented in Elias et al. (2018) also use covariance func-
tions based on Euclidean distance between plots.

In this paper, we limit the focus to spatial variation in 
agricultural field trials such as changes in fertility, water-
ing and soil, not to the spatial variation occurring due to 
the way plots are treated. We model this spatial variation 
using different models with publicly available open-source 
software. We fit the common column and row effects and 
the separable first-order autoregressive AR1⊗ AR1 model 
(Cullis and Gleeson 1991; Gilmour et al. 1997). In addition, 
we fit a Gaussian random field (Matérn) model to the field 
trial via the stochastic partial differential equation (SPDE) 
approach introduced by Lindgren et al. (2011).

For inference, we use the Bayesian numerical approxi-
mation procedure known as the integrated nested Laplace 
approximations (INLA) introduced by Rue et al. (2009) with 
further developments described in Martins et al. (2013). The 
method is implemented in the R package INLA where mod-
els are fit with the inla() function with the same ease 
as using the base R functions lm() or glm(). INLA cal-
culates marginal posteriors for all model parameters (fixed 
and random effects and hyper-parameters) and linear com-
binations of effects without using sampling-based methods 
such as Markov chain Monte Carlo (MCMC). It is based on 
numerical approximations and numerical methods for sparse 
matrices and is much faster than sampling-based methods 
(Rue and Martino 2007).

INLA has previously been compared with several other 
methods for statistical inference. One of these is Mathew 
et al. (2015) who compared INLA, MCMC (as implemented 
in the R package MCMCglmm; Hadfield et al. 2010) and 
restricted maximum likelihood (REML) (as implemented 
in the ASReml program; Butler et al. 2009), and found 
that INLA can be used for rapid and accurate estimation 
of genetic parameters. The computation time for INLA and 
REML was about the same and significantly shorter than 
with MCMC, which was also the conclusion of Holand et al. 
(2013). Huang et al. (2017) compared INLA and REML 
for spatial models and showed that the performance of 
INLA–SPDE was comparable to REML. We emphasize 
that these comparisons are not straightforward because dif-
ferent programs implement different computational meth-
ods as well as different models. For example, the R package 
INLA implements a full Bayesian analysis (using the INLA 
method), as does the R package MCMCglmm (using the 
MCMC method), while the ASReml program implements an 
empirical Bayes analysis (using a two-stage method where 
first hyper-parameters are estimated and then using these 
estimates the fixed and random effects are estimated). Gia-
nola et al. (1986) and Sorensen and Gianola (2007) describe 
these differences in great detail.

The R package INLA is flexible with respect to the 
field trial design and to including several years and loca-
tions in the analysis. For example, it can fit designs beyond 
the standard lattice design, which we demonstrate with the 
Nelder wheel design used in forestry (Parrott et al. 2012). 
For a recent review and comprehensive treatment of the R 
package INLA, see Bakka et al. (2018) and Krainski et al. 
(2018).

The objective of this article was to test established spa-
tial models for analysing agricultural field trials using the 
open-source R package INLA. This R package allows us to 
fit multi-trial data where designs vary between trials and do 
not necessarily have to be regular. With a simulation study, 
we show that the Matérn model performs equally well as the 
AR1⊗ AR1 model. Further, using the package enables full 
Bayesian analysis. We also fitted the models on wheat data 
from Lado et al. (2013) and on a simulated tree breeding 
data set with the Nelder wheel design to further demonstrate 
the flexibility of the Matérn model and SPDE approach 
implemented in the R package INLA.

Material and methods

In this section, we present the data for a simulated wheat 
breeding programme, a real wheat field trial and a simulated 
tree breeding trial with the Nelder wheel design. We also 
present the used statistical models, studied cases, how we 
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inferred model parameters and how we evaluated the dif-
ferent models.

Experimental design and data

Simulated wheat data

To evaluate and compare the proposed models, we have 
simulated a wheat breeding programme and correspond-
ing field trials using the R package AlphaSimR (Faux et al. 
2016; Gaynor et al. 2019). The simulation followed closely 
our previous work (Gaynor et al. 2017; Gorjanc et al. 2018), 
where we simulated a wheat-like genome and 30 years of a 
wheat breeding programme with field trials.

The ancestral wheat-like genome had 21 chromosomes, 
each with 1000 single nucleotide polymorphism markers 
and 1000 quantitative trait loci. Each year in the breeding 
programme was based on 100 crosses between 50 parental 
inbred lines with 100 doubled-haploid lines per cross, result-
ing in a total 10,000 lines. These were planted in headrows, 
and the 1000 best individuals were planted in a preliminary 
yield trial with 0.25 heritability. The 100 best went through 
a final stage of planting and selection. The 50 best indi-
viduals from the preliminary yield trial and the following 
stages were used as parents in the next year of the breed-
ing programme. Selection was based on phenotype with the 
exception of the preliminary yield trial in years 20 through 
30, where we used the estimated breeding value.

We have focused our attention to the preliminary yield 
trial, because this stage has low replication, which makes 
modelling of spatial variation important. The 1000 lines in 
the preliminary yield trial were planted in two locations, 
with plots randomly assigned, ensuring that each line was 
planted once in each location so that the two locations were 
considered as replicates. The fields in the two locations had 
the same design, plots arranged in a lattice with 50 rows 
and 20 columns. The distance between columns was twice 
as large as the distance between rows causing long and nar-
row plot shape.

We let the years 1 through 19 serve as burn-in years for 
the breeding programme, and for years 20 through 30 the 
plots in the preliminary yield trial were assigned spatially 
dependent effects. We sampled plot spatial effects from a 
Matérn model generated via the SPDE approach with a spa-
tial range of 10 units. We varied the proportion of variation 
due to spatial effects to be 0% , 50% , or 75% of the residual 
variance, that is, with 50% a half of variation between plots 
was due to spatial effects and a half due to other unknown 
effects (plot residual). More detailed description of the 
Matérn model and the SPDE approach is given in the “Spa-
tial effect” and “The SPDE approach to spatial modelling” 
sections. To simulate yield phenotypes, we summed the 
year, location, individual genetic, spatial dependent plot 

and independent plot residual effects. We sampled year 
and location effects from a Gaussian distribution with an 
expected value of 0 and variance equal to residual variance. 
Individual genetic effects were based on quantitative trait 
loci genotypes and corresponding allele substitution effects 
(Faux et al. 2016; Gaynor et al. 2019). We standardized the 
yield phenotype before the data analysis, by centring with 
the mean and scaling with the standard deviation across both 
locations within the same year.

The reason for simulating spatial effects from the Matérn 
model generated via the SPDE approach was that this gen-
erated realistic geostatistical spatial processes—the true 
underlying spatial variation in a field is more likely a con-
tinuous process rather than discrete process. However, we 
also simulated spatial effects according to the AR1⊗ AR1 
model. We varied the proportion of variation due to spatial 
effects to be 0% , 50% , or 75% of the residual variance, and 
we set the autocorrelation parameter to be 0.8 in both row 
and column directions. This autocorrelation corresponds to 
a range of 10 units.

Chilean wheat data

We used parts of the wheat field trial data presented in Lado 
et al. (2013) and used by Rodríguez-Álvarez et al. (2018) as 
shown in Fig. 1. The data consisted of 384 advanced lines 
from wheat breeding programmes in Chile and Uruguay in 
years 2011 and 2012, and 16 additional lines that were not 
genotyped. The advanced lines were evaluated in the Santa 
Rosa region under two different levels of water supply: full 
irrigation (FI) and mild water stress (MWS). We analysed 
the total grain yield harvested within each plot.

The experimental design was an alpha-lattice with 20 
incomplete blocks, with each block containing 20 geno-
types. Two replicates were used for each year and irrigation 
level, so that each trial had 40 rows and 20 columns, and the 
lines were assigned the same plot for each year and irriga-
tion level. According to Rodríguez-Álvarez et al. (2018), 
the replicates were placed such that the first/second 20 rows 
corresponded to the first/second replicate. This is indicated 
by the horizontal line in Fig. 1. Plots were twice as long as 
they were wide and consisted of five rows 2 m long and 0.2 
m distance among the rows.

This gave four data sets each with 800 observations. The 
384 genotyped lines had 102,324 genome-wide markers. We 
imputed missing genotypes with the average allele dosage 
and computed the VanRaden (2008) genomic relationship 
matrix among the 384 advanced lines. For the 16 lines not 
genotyped, but with phenotypic observations, we assumed 
a genomic relationship of zero between themselves and the 
384 advanced lines.

One line had missing phenotypic observations for all rep-
licates in 2011, and five other lines had missing phenotypic 
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observation for one replicate each. We standardized the 
yield phenotype before the data analysis, by centring with 
the mean and scaling with the standard deviation across all 
locations for multi-trial models and for each trial separately 
for the single-trial models.

Simulated tree data with the Nelder wheel design

We also simulated data with a design used by tree breeders to 
test the effect of multiple planting densities on tree growth, 
known as the Nelder wheel design (Parrott et al. 2012). We 
chose this particular design to show the flexibility of the R 
package INLA and the SPDE approach. The Nelder wheel 
design is circular with rings radiating outward with increas-
ing distance. Spokes connect the centre with the furthest ring, 
and at the intersections of spokes and rings, a tree is planted. 
The variable planting densities within a single trial eliminate 
the need for separate trials for each planting density.

In the simulation, we tested 10 different planting densities 
with 30 planted trees for each density. The inner circle had 
a radius of 10, and the 9 subsequent circles had a radius of 
1.15 times the radius of the previous circle (Fig. 2).

We simulated the phenotype for each tree as a sum of 
the intercept with a value of 10, the tree density covariate 
multiplied by a regression coefficient of 10, a spatial effect 
simulated from a Matérn model using the SPDE approach, 

Fig. 1  Grain yield in the 
Chilean wheat data (Lado et al. 
2013)
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and a Gaussian residual with zero mean and variance 0.5. 
The simulated field (spatial effects) had a variance of 0.5 and 
a range of 10. There was no other effects to the design, that 
is, no treatment other than density, since modelling other 
genetic and environmental effects was illustrated with the 
simulated wheat data and the Chilean wheat data.

The growing area available to each tree i was calculated 
from:

where � is the angle between rays in radians and ri is the 
radius of circle i. The factor k is 1.15. The planting density 
was then calculated as the inverse of the growing area.

Statistical models

We assumed to have n plots such that a single field trial 
was indexed by the rows and columns of an r × c array. 
There were m ≤ n different lines planted in these plots. The 
observed phenotype y(si) was assumed to be a realization of a 
random variable Y(si) in plot coordinates si ∈ ℝ

2 , i = 1,… , n . 
We considered the following general linear model:

with

where �0 is an intercept, � = (�1,… , �nf ) is a vector of 
effects with a known covariate vector wi for plot i with 
�i ∼ N(0, �2

�i
) (for example year or location effects), gj is the 

genetic effect for individual j = 1,… ,m tested in the plot i 
and x(si) is the spatial effect for the plot.

Genetic effect

We assumed that the genetic effect gj was a sum of an 
additive genetic effect (breeding value) aj and a non-addi-
tive (residual) genetic effect nj . For non-additive genetic 
effects, we assumed an independent prior distribution 
n ∼ N(0, Im�

2
n
) . For additive genetic effects, we assumed 

that they were fully explained by genome-wide markers such 
that a ∼ N(0,A�2

a
) , where A is a relationship matrix. We 

calculated the relationship matrix as A = ZZT∕k , where Z 
is a column-centred genotype matrix of dimension m × p , 
p is the number of markers, and k = 2

∑
l ql(1 − ql) with ql 

being allele frequency at marker l (VanRaden 2008). An 
equivalent model for the additive genetic effects was to use 
the genotype matrix directly, letting a = Zu , where u are 
marker effects u ∼ N(0, �p�

2
u
).

Genome-wide marker data contain substantial amount of 
shared information among related individuals due to shared 

Growing area (i) =
�r2

i
(k − k−1)

2
,

(1)y(si)|�(si), �2
e
∼ N(�(si), �

2
e
),

(2)�(si) = �0 + wi� + gj + x(si),

genome segments. Therefore, we could compress it to reduce 
model dimension while retaining information, which saved 
computation time (e.g. Jolliffe 1986). With singular value 
decomposition, we obtained:

where U is a unitary matrix of dimension (m × m) , S is the 
diagonal matrix (m × n) of singular values and V is an (n × n) 
matrix of eigenvectors. We used the principal components 
(the columns of ZV ) corresponding to the largest singular 
values of S and chose p∗ components that explained approxi-
mately 95% of the variation in Z . That is, we replaced the 
Z by Z∗ = ZV(∶, 1 ∶ p∗) of dimension m × p∗ . The linear 
predictor from (2) then became:

where z∗
j
 is the jth row vector of Z∗ for individual j and 

u∗ ∼ N(0, �p∗�
2
u∗
) are principal component effects.

Spatial effect

We tested the independent row and column effects model, 
the separable first-order autoregressive ( AR1⊗ AR1 ) model 
and a Gaussian random field (Matérn) model via the SPDE 
approach. The independent row and column model and sepa-
rable autoregressive model are based on a discretization of 
the field and model only a finite collection of spatial random 
variables. For these models, we omit the si in x(si) and use xi . 
This is to emphasize that these models use neighbouring plots 
as opposed to the Gaussian random field which is a continu-
ous spatial process and for which we use the notation x(si).

Row and column effects model

Row and column effects can model the underlying smooth 
spatial field as well as external variation due to field manage-
ment. We assumed:

where ri ∼ N(0, �2
r
) is the row effect and ci ∼ N(0, �2

c
) is the 

column effect of plot i, i = 1,… , n.

Separable autoregressive model, AR1⊗ AR1

The autoregressive model of order 1 (AR1) for the Gaussian 
vector x = (x1,… , xr) is defined as:

where |𝜌| < 1.
For modelling the influence of neighbouring plots 

along rows and columns, the autoregressive model in each 

Z = USVT ,

(3)�j(si) = �0 + wi� + z∗
j
u∗ + nj + x(si),

xi = ri + ci,

x1 ∼ N(0, �2
x
∕(1 − �

2)),

xi|xi−1 ∼ N(�xi−1, �
2
x
), i = 2,… , r,
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direction was combined into a two-dimensional first-order 
separable autoregressive model (Cullis and Gleeson 1991; 
Gilmour et al. 1997), denoted as AR1⊗ AR1 . In this model 
the spatial effect vector x of length n was modelled as:

with � = �r ⊗ �c . The matrices �r and �c are the covari-
ance matrices of first-order autoregressive processes in row 
and column direction, respectively, and ⊗ is the Kronecker 
product. The model had two dependency parameters, one in 
each direction, �r and �c , and a variance parameter �2

x
.

Gaussian random fields and the Matérn model

In the model described above, the spatial variation was mod-
elled as discrete, meaning that the model only considers data 
on a fixed field trial layout, possibly allowing the distance 
between rows to be different from the distance between col-
umns. Assuming a continuous field for the spatial variation 
is, however, more realistic and allows the spatial variation 
to be modelled at any observed distance or field trial layout.

Continuously indexed Gaussian random fields play an 
important role in spatial statistical modelling and geosta-
tistics. In the field D ∈ ℝ

d with coordinates s ∈ D  , the 
continuously indexed Gaussian random field x(s) has a 
joint Gaussian distribution for all finite collections {x(si)} . 
The Gaussian random field is specified through the mean 
� and the covariance matrix � = C(si, sj).

In this study, we used � = 0 and the Matérn covariance 
function, which is the most important covariance function 
in spatial statistics (Stein 2012). We refer to this Gauss-
ian random field model as the Matérn model. The Matérn 
covariance function between locations si, sj ∈ ℝ

d was:

where K� is the modified Bessel function of the second 
kind and order 𝜈 > 0 . The parameter � can be expressed as 
� =

√
8�∕� , where 𝜌 > 0 is the range parameter describing 

the distance where the correlation between two points was 
near 0.1, and �2

s
 is the marginal variance. The parameter 

� determined the mean-square differentiability of the field. 
The SPDE approach is a computationally efficient way to fit 
the Gaussian random field (Matérn) model (Lindgren et al. 
2011), which we describe in the “The SPDE approach to 
spatial modelling” section.

Prior distributions

We used a full Bayesian approach to estimation which 
requires prior distributions for all parameters. The model 
consisted of two layers of parameters. The first layer 

x ∼ N(0,��2
x
),

(4)C(si, sj) =
�2
s

2�−1Γ(�)

�
�‖sj − si‖

��
K�

�
�‖sj − si‖

�
,

consisted of fixed and random effects, for which we have 
specified most prior distributions above. In addition, a 
Gaussian prior with mean 0 and variance 1000 was assigned 
to the intercept and covariate effects, meaning �2

�i
= 1000 . 

The second layer consisted of the variance/dispersion param-
eters and other (spatial) parameters controlling the first layer 
and the likelihood for the data, i.e. all variance parameters, 
the parameters of the AR1⊗ AR1 and the Matérn models. 
For parameters in this layer, which we refer to as the hyper-
parameters, we used the default priors of the R package 
INLA. These are proper, but weak priors. For variance 
parameters, this was an inverse gamma prior with shape 1 
and inverse scale 5 × 10−5 , which has 95% percentiles at 
approximately 0.009 and 0.010. In the separable autoregres-
sive model, the same inverse gamma prior was set for the 
marginal variance �2

x
∕(1 − �2) . The transformed variable 

log((� + 1)∕(� − 1)) was assigned a Gaussian prior with 
mean 0 and standard deviation 0.15, which has 95% percen-
tiles at approximately − 0.15 and 0.15 for � . Priors for the 
Matérn model were specified for the parameters � and � that 
control spatial range and variance; see the “The SPDE 
approach to spatial modelling” section. We used the default 
joint Gaussian prior on log(�) and log(�) with mean 0 and 
identity covariance matrix, so that log(�) and log(�) were 
independent (Blangiardo and Cameletti 2015) and automati-
cally scale to the size of the field.

Case studies

Simulation study

We fitted the model (1) with two versions of the linear predic-
tor (3) to the preliminary yield trial of each simulated breed-
ing programme—without and with genome-wide markers. The 
two linear predictors were:

where �0 , wi� , gj , z∗j u
∗ were as described as in the “Statistical 

models” section. The linear predictors differed in that model 
(5) assuming that individuals were genetically independent, 
whereas model (6) used genome-wide marker data to model 
the genetic dependency. The linear predictors included both 
trials simultaneously. The k in sk

i
 indicated that the plot coor-

dinates si were in field k, where k = 1, 2 , and a fixed effect of 
location was included in wi� . Otherwise, the two locations 
were assumed to be independent realizations from the same 
distribution, and we used all three spatial models described in 
the “Spatial effect” section to fit spatial variation. We also 
fitted a model where the spatial effect was omitted, which we 

(5)�(sk
i
) = �0 + wi� + x(sk

i
) + nj,

(6)�(sk
i
) = �0 + wi� + x(sk

i
) + z∗

j
u∗,
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denoted as the NoSpatial model. Since the distance between 
columns was twice as large as the distance between rows, we 
accounted for this with the Matérn model, by appropriately 
scaling the column coordinates. The matrix Z∗ was con-
structed using p∗ = 500 principal components of the singular 
value decomposition of the centred genotype matrix Z.

Chilean wheat data

Using the data sets from the four trials (Lado et al. 2013) 
presented in the “Experimental design and data” section, 
we fitted the model (1) with different versions of the linear 
predictor (3). The four linear predictors were:

where �0 , x(si) , z∗j u
∗ , and nj are as described in the “Statisti-

cal models” section. As with the simulation study, we used 
the three spatial models described above and the NoSpatial 
model. The linear predictors W1M and W2M included all 
four trials simultaneously, and therefore the intercept �k , 
k = 1,… , 4 , was trial specific to capture fixed year and irri-
gation effects. Further, the k in sk

i
 indicated that the plot 

coordinates si were in field k. The four trials in Fig. 1 showed 
quite different spatial patterns with respect to dependency in 
distance and variance, so it was not reasonable to assume 
that they were realizations from the same distribution. How-
ever, assigning separate variance and parameters controlling 
the spatial dependency to each trial increased the number of 
hyper-parameters considerably. We therefore modelled the 
spatial effect in the trials from 2011 as independent realiza-
tions from the same underlying distribution, and the same 
for the 2012 trials, because these showed most similar 
behaviour. This gave two sets of spatial parameters in the 
model, one set for the 2011 trials and one set for the 2012 
trials. We emphasize that this decision was driven by obser-
vation of the data. The matrix Z∗ was constructed using 
p∗ = 280 principal components of the singular value decom-
position of the centred and scaled genotype matrix Z.

Nelder wheel plot

To analyse the simulated tree data, we fitted the model (1) 
with the following linear predictor:

where �0 is the intercept, � is a density effect, and a Matérn 
model is assumed for the spatial effect x(si) . We also fitted a 
model where the spatial effect was omitted.

�(si) = �0 + x(si) + nj, W1: wheat model 1

�(si) = �0 + x(si) + z∗
j
u∗ + nj, W2: wheat model 2

�(sk
i
) = �k + x(sk

i
) + nj, W1M: use all trials

�(sk
i
) = �k + x(sk

i
) + z∗

j
u∗ + nj, W2M: use all trials

�(si) = �0 + wi� + x(si),

SPDE, inference and evaluation of case studies

The SPDE approach to spatial modelling

Modelling with Gaussian random fields is computationally 
challenging because they give rise to dense precision matri-
ces that are numerically expensive to factorize in the esti-
mation procedures (Rue and Held 2005). Gaussian Markov 
random fields do not incur this penalty because they have 
a sparse precision matrix due to their Markov property. 
Lindgren et al. (2011) showed how to construct an explicit 
link between (some) Gaussian random fields and Gauss-
ian Markov random fields by showing that the approximate 
weak solution of the SPDE:

is a Gaussian random field with Matérn covariance function 
as given in (4). Here, W(⋅) is the Gaussian white noise, Δ is 
the Laplacian, � is a smoothness parameter, � is the scale 
parameter in (4), d is the dimension of the spatial domain 
and � is a parameter controlling the variance. The parameters 
of Matérn covariance are linked to the SPDE through:

where � = � − d∕2 , and we use � = 2 and d = 2.
A Gaussian Markov random field approximation 

described in Lindgren et al. (2011) is enabled by solving 
the SPDE in (7) by the finite element method. Further details 
on the SPDE approach to spatial modelling can be found in 
Lindgren et al. (2011).

Bayesian inference with INLA and the R package INLA

Statistical inference is carried out using the INLA method 
introduced in Rue et al. (2009), which is implemented for 
use in R (R Core Team 2018) in the R package INLA (avail-
able at www.r-inla.org). In this section, we give a short 
introduction to the class of models known as latent Gauss-
ian models and how INLA can be used to approximate the 
posterior marginal distributions for such models. For an 
in-depth description of INLA, useful sources are Rue et al. 
(2009), Martins et al. (2013) and the recent review by Rue 
et al. (2017).

The class of latent Gaussian models includes many mod-
els, for example generalized linear (mixed) models, general-
ized additive (mixed) models and spline smoothing methods. 
Latent Gaussian models are hierarchical models in which 
observations y are assumed to be conditionally independent 
given a latent Gaussian random field x and hyper-parameters 

(7)
(𝜅2 − Δ)𝛼∕2x(s) = W(s),

s ∈ ℝ
d, 𝛼 = 𝜈 + d∕2, 𝜅 > 0, 𝜈 > 0,

�
2
s
=

Γ(�)

Γ(�)(4�)d∕2�2��2

http://www.r-inla.org
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�1 , that is, �(y|x,�1) ∼ Πi∈I�(yi|xi,�1) . The latent field x 
includes both fixed and random effects and is assumed to 
be Gaussian-distributed given hyper-parameters �2 , that is, 
�(x|�2) ∼ N(�(�2),�(�2)) . The parameters � = (�1,�2) are 
known as hyper-parameters and control the Gaussian field 
and the likelihood for the data. These are usually variance 
(dispersion) parameters for simple models, but can also 
include other parameters, for example autocorrelation. The 
hyper-parameters must also be assigned a prior density to 
completely specify the model.

The main aim of Bayesian inference is to estimate the 
marginal posterior distribution of the variables in the model, 
that is, �(�j|y) for hyper-parameters and �(xi|y) for location 
parameters. INLA computes approximations to these densi-
ties quickly and with high accuracy. Laplace approximations 
are applied to integrals that are Gaussian or close to Gauss-
ian, and for non-Gaussian problems, conditioning is done to 
break down the approximations into smaller sub-problems 
that are almost Gaussian.

For the computations in INLA to be both quick and 
accurate, the latent Gaussian models have to satisfy some 
additional assumptions. Since INLA integrates over the 
hyper-parameter space, the number of non-Gaussian hyper-
parameters � should be low, typically less than 10, and not 
exceeding 20. Further, the latent field should not only be 
Gaussian, it must be a Gaussian Markov random field. The 
conditional independence property of a Gaussian Markov 
random field yields sparse precision matrices which makes 
computations in INLA fast due to efficient algorithms for 
sparse matrices. Lastly, each observation yi should depend 
on the latent Gaussian field through only one component xi.

The R package INLA can be installed from within R. It 
is run using the ����() function with three mandatory argu-
ments: a data frame containing the data, a formula much 
like the formula for the standard ��() function in R and a 
string indicating the likelihood family. The default is Gauss-

ian with the identity link. The following call generates an 
object of type inla:

Prior distributions are specified through additional argu-
ments. Several tools to manipulate models and likelihoods 
exist as described in tutorials at the Web page www.r-inla.
org and the books by Blangiardo and Cameletti (2015), 
Krainski et al. (2018). The � scripts used for the fitted mod-
els and the tree breeding simulation are available in Online 
Resource 1. Specifically we provide R code for all the fitted 
models to the real wheat data and the simulation and analysis 
of the tree breeding data with the Nelder wheel design.

Here, we show how to fit an: (1) Row + Col model, (2) 
AR1 row and AR1 col model, (3) AR1⊗ AR1 model and 
(4) Matérn model. The data should be stored in a data 
frame or list. Here, the data frame Data has one row for 
each observation with columns containing the phenotype, 
id for each line and row and column in the field. The id for 
each line is included twice because we want to model the 
genetic effect with and without genetic markers.

In the formula below, we indicate that each line should be 
modelled both with an independent normal distributed effect 
and using marker effects for the markers stored in Gen, the 
approach described in the “Genetic effect” section.

To include a spatial model, one of the following functions 
can be added to Formula.

http://www.r-inla.org
http://www.r-inla.org
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Here, f() indicates a random effect with a specific 
model. The group argument nests the random effect within 
each level of the group factor, and the control.group 
argument specifies the model between the group levels. 
The models with formula including either of effects (1)–(3) 
are fitted with the call to inla() as described above. The 
SPDE approach (4) requires a few additional stages which 
we show in the full code available in Online Resource 1.

Evaluation of model performance

We evaluated the models using the correlation between the 
true and estimated values, the continuous rank probability 
score (CRPS), by identifying the top individuals, and the 
residual variance.

We used the CRPS to take into account the whole pos-
terior predictive distribution, that is, to compare the esti-
mated posterior means with the true/observed values while 
accounting for the uncertainty of estimation. The CRPS is 
defined as (Gneiting and Raftery 2007):

where F is the cumulative distribution of the estimator of 
interest and y is the observed value. The CRPS is negative 
oriented, so the smaller the CRPS the closer the estimated 
value is to the observed/true value. For readers not familiar 
with the CRPS, three plots in Fig. 3 show the cumulative 
distribution functions for estimates and the observed value 
of 1.0. In Fig. 3a, the estimate is close to the true value and 
the area between the curves is small and so is the CRPS. In 
Fig. 3b, the estimated mean is equal to the true value, but 
the large uncertainty due to estimation causes a large area 
between the curves, and hence a larger CRPS than in Fig. 3a. 
In Fig. 3c, the uncertainty of the estimation is small, but the 

CRPS(F, y) = �
∞

−∞

(F(u) − 1{y ≤ u})2 du,

estimated mean is further from the true value, causing the 
area and the CRPS to be large.

For the simulated data, we computed the correlation and 
the CRPS between true and estimated breeding value. We 
also quantified how many of the ten best individuals were 
among the estimated top 100 individuals.

For the real data, we did not know the true breeding 
value, and it was therefore not possible to validate the esti-
mated breeding values. We therefore focused on the residual 
variance from each model as a measure of the unexplained 
variance. This value can be seen as a proxy for the coeffi-
cient of determination ( R2 ), a measure on how much of the 
data variance is explained by a given model (Gelman and 
Hill 2006).

Results

In this section, we present the results from the three cases 
presented in the “Case studies” section. In the results from 
the simulation study, we compare correlation, CRPS and 
top ranking of individuals between the spatial models. In 
the results from the real data, we present estimated genetic 
variances, marker variances and residual variances and com-
pare these between the different models. In the results from 
the simulated tree breeding data, we present the posterior 
distribution of all parameters and the estimated spatial effect.

Simulation study

This section presents the results from the simulation study. 
The models were evaluated using the correlation and CRPS 
between the true and estimated breeding value and using the 
number of the top ten individuals that were among the top 
100 ranked individuals when considering estimated breed-
ing value (posterior mean). In this section, all tables have 
three scenarios indicating the proportion of environmental 
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Fig. 3  Cumulative distribution function (CDF) of the observation (true value = 1; solid line) and of estimate (dashed line)
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variance due to spatially structured variation in the data, 
0.00, 0.50 or 0.75, while the total variance was the same. 
Proportion of spatial variation therefore indicates how much 
of total environmental variance was due to structured spa-
tial noise and unstructured noise (see the “Simulated wheat 
data” section).

In this section, we only present the results from data with 
spatial effects generated from the Matérn model via the 
SPDE approach. Tables with results for correlation, CRPS 
and ranking, based on data with spatial effect generated from 
the AR1⊗ AR1 model, are given in the Online Resource 2. 
These results show similar tendencies to the ones presented 
in this section. Tables showing average estimates for resid-
ual variance, genetic and marker variance and other spatial 
hyper-parameters based on data with spatial effect generated 
from the Matérn model are given in the Online Resource 2.

In Table 1, the average correlation is presented, in Table 2 
the average CRPS is presented, and in Table 3 the average 
number of the top ten individuals that are among the top 100 
ranked individuals is presented. The average was taken over 
100 independent realizations of the breeding programme 
described in the “Simulated wheat data” section. We note 
that genomic data improved the correlation, CRPS and the 

average number of the top ten individuals for all models and 
proportions of spatial variance. We further note that model-
ling the spatial variation also improved these metrics. Below, 
we go through each table in detail.

Across all metrics, the Matérn and AR1⊗ AR1 stand out 
as best to model the spatial variation. These had the highest 
correlation when spatial variation was present as seen in 
Table 1. When there was no spatial variation, the two models 
did not perform worse than not including a spatial effect. 
The performance increased as the extent of spatial variation 
increased. The CRPS results in Table 2 show lower CRPS 
for the Matérn model and the AR1⊗ AR1 models compared 
to the NoSpatial and Row + Col models. These results are in 
line with the correlation results with one exception for the 
AR1⊗ AR1 model. We also note an improvement in CRPS 
with increasing extent of spatial variation.

The average number of the top ten individuals among the 
top 100 ranked individuals is given in Table 3. The Matérn 
and AR1⊗ AR1 models again had better results when there 
was a spatial variation in the data and when genome-wide 
markers were used—in this setting there were on average 
between 6 and 8 of the top ten individuals among the top 
100 ranked individuals. As expected, the NoSpatial showed 

Table 1  Correlation between 
the simulated true and 
estimated breeding value in the 
preliminary yield trial by the 
proportion of spatial variation, 
the spatial model and using 
genome-wide markers

The standard error was around 0.002

Genome-wide markers No Yes

Prop. of spatial var 0.00 0.50 0.75 0.00 0.50 0.75

NoSpatial 0.39 0.39 0.39 0.62 0.61 0.62
Row + Col 0.39 0.41 0.42 0.62 0.63 0.64
AR1⊗ AR1 0.39 0.47 0.56 0.62 0.68 0.74
Matérn 0.39 0.47 0.57 0.62 0.68 0.74

Table 2  CRPS between the 
simulated true and estimated 
breeding value in the 
preliminary yield trial by the 
proportion of spatial variation, 
the spatial model and using 
genome-wide markers

The standard error was around 0.0002

Genome-wide markers No Yes

Prop. of spatial var 0.00 0.50 0.75 0.00 0.50 0.75

NoSpatial 0.149 0.149 0.149 0.114 0.115 0.114
Row + Col 0.169 0.142 0.138 0.114 0.113 0.111
AR1⊗ AR1 0.169 0.127 0.117 0.114 0.108 0.100
Matérn 0.148 0.127 0.117 0.114 0.107 0.099

Table 3  Average number of the 
top ten individuals among the 
top 100 ranked individuals in 
the preliminary yield trial by the 
proportion of spatial variation, 
the spatial model and using 
genome-wide markers

The standard error was around 0.05

Genome-wide markers No Yes

Prop. of spatial var 0.00 0.50 0.75 0.00 0.50 0.75

NoSpatial 3.89 3.82 3.89 6.32 6.41 6.43
Row + Col 3.89 4.05 4.20 6.33 6.59 6.77
AR1⊗ AR1 3.89 4.81 5.81 6.32 7.36 8.07
Matérn 3.89 4.80 5.85 6.32 7.38 8.15
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no improvement when the degree of spatial variation was 
increased and the Row + Col model showed only a little 
improvement with respect to all evaluations.

We also evaluated predictions of breeding values for 
1000 doubled-haploid individuals that were genotyped, 
but not phenotyped. These individuals served to test out-
of-sample prediction, which we could perform using esti-
mated genome-wide marker effects. The average correlation 
between the true and predicted breeding value is presented 
in Table 4, where AR1⊗ AR1 and Matérn again had the 
highest correlation. For the CRPS in Table 5, we see a simi-
lar trend as for the phenotyped individuals; however, the 
improvement with the higher degree of spatial variation is 
now less dominant. Finally, the average number of the top 
ten individuals among the 100 ranked individuals is given 
in Table 6. These results improved with the Matérn and 
AR1⊗ AR1 model and with the increasing spatial variation. 
The results for the non-phenotyped doubled-haploid lines 
showed lower correlation, higher CRPS and lower number of 
the top ten individuals captured than in the preliminary yield 
trial. This is expected as we had not observed any phenotype 
data on the doubled-haploid lines.

Chilean wheat data

In this section, we present results from fitting the models 
W1, W2, W1M and W2M to the Chilean wheat data. We 
present the estimated genetic variances, marker variances 
and residual variances from the different spatial models. 
These are shown in Fig. 4. We also present the posterior 
predicted phenotype from model W2 for the 2011 trial with 
full irrigation. Tables showing estimates for residual vari-
ance, genetic and marker variance, and other spatial hyper-
parameters are given in the Online Resource 2.

We first focus on the results from fitting the models with-
out genome-wide markers (models W1 and W1M), which 
are shown in Fig. 4a, b. The estimated genetic variances were 
similar within each trial except for the NoSpatial case which 
assigned all variation to the residual variance in the trial 
from 2011 with mild water stress (MWS), indicating a very 
bad model fit. Between the trials, there was more variation 

between the estimates of genetic variance; however, most 
95% confidence intervals overlap between the different mod-
els and trials with a few exceptions. The uncertainty in the 
genetic variance was reduced when all trials were analysed 
together (W1M), which was expected as more data were 
used in this model. For the residual variance, we expected 
that it would differ both between models and trials as they 
described the amount of variation not explained by the struc-
tured model terms. As expected, the residual variance from 
NoSpatial was the largest as this model cannot explain spa-
tial variation. The AR1⊗ AR1 model had the lowest residual 
variance, closely followed by the Matérn model in the 2011 
trials. When all trials were analysed jointly, the residual vari-
ance increased slightly for the AR1⊗ AR1 and the Matérn.

We now focus on the results for models including 
genome-wide markers (models W2 and W2M) in Fig. 4c–e. 
We note that marker variance estimate had large uncertainty 
and was lower in 2011, particularly in the medium-water 
stress condition. The genetic variance not captured by mark-
ers (Fig. 4d) became more similar between the different tri-
als compared to model W1 (as summarrized in Fig. 4a). The 
residual variance did not change significantly, indicating that 
the markers captured the variation that was already captured 
by the genetic effect modelled in W1 and W1M. However, 
with genome-wide markers we captured the genetic depend-
ency between individuals with the model, which makes it 
possible to predict genetic value for non-phenotyped indi-
viduals as shown in the previous subsection.

Table 4  Correlation between the simulated true and predicted breed-
ing value for the non-phenotyped doubled-haploid lines by the pro-
portion of spatial variation and the spatial model

The standard error was around 0.004

Prop. of spatial var 0.00 0.50 0.75

NoSpatial 0.36 0.36 0.36
Row + Col 0.36 0.37 0.38
AR1⊗ AR1 0.36 0.42 0.47
Matérn 0.36 0.42 0.48

Table 5  CRPS between the simulated true and predicted breeding 
value for the non-phenotyped doubled-haploid lines by the proportion 
of spatial variation and the spatial model

The standard error was around 0.00004

Prop. of spatial var 0.00 0.50 0.75

NoSpatial 0.128 0.128 0.129
Row + Col 0.128 0.128 0.127
AR1⊗ AR1 0.128 0.126 0.122
Matérn 0.128 0.126 0.122

Table 6  Average number of the top ten individuals among the top 
100 ranked individuals for the non-phenotyped doubled-haploid lines 
by the proportion of spatial variation and the spatial model

The standard error was around 0.06

Prop. of spatial var 0.00 0.50 0.75

NoSpatial 3.37 3.38 3.35
Row + Col 3.37 3.51 3.60
AR1⊗ AR1 3.37 3.99 4.67
Matérn 3.37 3.97 4.75
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We show the fitted values from model W2 for the 
2011 full irrigation trial in Fig. 5. These show how the 
AR1⊗ AR1 and Matérn models managed to capture the 
spatial pattern in the observations, whereas the NoSpatial 
model and Row + Col model could not. Since we do not 
know the true spatial effects for the data, we cannot know 
for a fact that this spatial variability is real. However, from 
the simulation study we showed that the models accounting 
for spatial variability do not perform worse than the NoS-
patial model when there is no spatial variability acting on 
the phenotype. Note that the scale here is different from the 
one in Fig. 1 since models were fitted to standardized data.

Nelder wheel plot

In this section, we present the results from fitting the model 
presented in the “Nelder wheel plot” section to the simu-
lated tree breeding data. In Fig. 6, the posterior distributions 
for the intercept, fixed density effect, spatial range, spatial 

variance and residual variance from the Matérn model are 
presented along with the true values used in simulating the 
data. For all parameters, the posterior distribution contained 
the true values and the distribution modes were close to the 
true values for the Matérn model.

For the NoSpatial model, the true effect of density is 
barely covered by the 95% confidence interval of the poste-
rior distribution (Fig. 6b), and the true intercept is not cov-
ered (Fig. 6a). The posterior residual variance is approxi-
mately twice as large as the true residual variance in Fig. 6c. 
This is expected as the NoSpatial model cannot account for 
the spatial variation, and we therefore expect it to perform 
worse than the Matérn model in this comparison.

In Fig. 7, we show the simulated spatial effect, the pos-
terior mean spatial effect and the standard deviation of the 
estimate. The mean estimate resembled closely the true 
spatial field, especially in locations where we had observa-
tions. The standard deviation was the smallest where we had 
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Fig. 4  Posterior variances in the models for Chilean wheat data. The top panels are for models that do not use genome-wide marker data (W1 
and W1M) and the bottom panels for models that use genome-wide marker data (W2 and W2M)
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observations and where the observations were more densely 
observed.

Discussion

The objective of this paper was to test established spatial 
models for analysing agricultural field trials using the open-
source R package INLA. We have fitted both spatial and 
genetic effects jointly in a simulated wheat trial data, a real 
wheat data set and a simulated tree breeding data set with 
the Nelder wheel design. Here, we highlight three points for 
discussion: (1) the importance of modelling spatial variation 
in agricultural field trials, (2) the flexibility of the R package 
INLA and the SPDE approach to model multiple trials and 
years as well as non-standard designs and non-standard phe-
notype distributions and (3) the limitations of the R package 
INLA to estimate large numbers of hyper-parameters and to 
fit genomic models.

Modelling spatial variation

With the analysis of simulated wheat data sets, we showed 
that the estimates of genetic effects can be improved by 
accounting for spatial dependency in trials irrespective of 
the magnitude of the spatial variation. This is in line with 
the other studies (Elias et al. 2018; Rodríguez-Álvarez et al. 
2018; Velazco et al. 2017; Piepho et al. 2008). We observed 
the greatest improvements with both the AR1⊗ AR1 model 
(Cullis and Gleeson 1991; Gilmour et al. 1997) and the 
Matérn model using the SPDE approach (Lindgren et al. 
2011). We measured this improvement with the correlation 
and continuous rank probability score (CRPS) between the 
true and estimated effects as well as the average number 
of the top ten individuals that were among the 100 ranked 
individuals based on the estimates. When we attempted to 
model non-existing spatial variation, the results were not 
significantly worse compared to not modelling it. This obser-
vation suggests that the AR1⊗ AR1 model and the Matérn 
model are good default spatial models that do not overfit 

Fig. 5  Posterior fitted values 
from the model W2 for trial 
2011 FI using all three methods 
of spatial correction and no 
spatial correction
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Fig. 6  Posterior distributions from model fitted to simulated tree breeding data. Full and dotted curves represent the posterior distribution and 
the straight dashed line the true values
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the data. A reviewer pointed out that field trial design and 
management effects should be modelled in addition to spa-
tial effects. When this is required (e.g. Borges et al. 2019; 
González-Barrios et al. 2019), the demonstrated R package 
INLA can easily accommodate this via its general model for-
mulae functionality, that is, by adding block and sub-block 
effects and row and column effects. These effects can be 
modelled either as fixed or as random effects.

Flexibility of the R package INLA

Through modelling the real wheat data, we demonstrated 
the flexibility of the R package INLA to model both the 
genetic and spatial effects for several trials simultaneously. 
We treated the spatial variation in each trial as an independ-
ent realization of the chosen spatial model. By modelling 
spatial and genetic effects across several trials jointly with 
one model, we did not lose any information as we would if 
spatial effects were estimated first and then subtracted from 
the data (Schulz-Streeck et al. 2013). Furthermore, there 
is a large potential in modelling all trials jointly because 
this approach enables reduction of the required number of 
replicates per individual per trial and therefore test more 
individuals (Bernal-Vasquez et al. 2014). It also makes it 
possible to estimate location and year effects, which can be 
helpful for future management of the trial locations.

With the Nelder wheel design, we demonstrated the flex-
ibility of the Matérn model using the SPDE approach with 
respect to the field trial design. This flexibility arises from 
the continuous modelling of spatial effects with the Matérn 
model as compared to the discrete approach of other stand-
ard models. The Nelder wheel example is a very special 
case and does not resemble standard agricultural field tri-
als, which largely have a regular lattice layout of plots. We 
have nevertheless included this example to demonstrate the 
flexibility of the Matérn model and the R package INLA. 
This approach can be used for regular as well as non-regular 
designs, which can be useful in special settings, for example, 
when plot sizes differ (Archbold et al. 1987), when design 
is non-standard as in the Nelder wheel design (Parrott et al. 
2012), when spatial correlation is not expected to follow 
standard patterns due to external variation (Bakka et al. 
2019), or if the terrain does not allow for a lattice-like layout 
of plots. Another possible use of the Matérn model could be 
to jointly model neighbouring trials. In this case, the Matérn 
model can accommodate any layout of the plots across the 
trials, while the AR1⊗ AR1 model would require that plots 
from the neighbouring trials follow a common layout to all 
trials. Other applications of the Matérn model and the SPDE 
approach could be in conservation and utilization of genetic 
resources in forestry, particularly in natural or semi-natural 
stands not planted in a formal layout, and for identification 
of trees in the wild for collection of seed for cultivation or 

for reforestation. The approach can also make use of area 
observations (Lindgren et al. 2011; Bakka et al. 2018) to 
model total yield per area with varying area between plots. 
These flexibilities could enable design of new field trials or 
an advanced analysis of existing trials that do not follow the 
common lattice-like layout.

In this study, we focused on phenotypes that can be 
modelled with a Gaussian distribution only. However, the 
R package INLA enables seamless modelling of other dis-
tributions such as binomial, Poisson and others. Breeder’s 
scores and other types of field trial data frequently follow 
these types of distributions. For most models, the only code 
change required is a switch of the distribution family; for 
example, to change the model with a continuous Gauss-
ian distribution to a discrete Poisson distribution we sim-
ply change inla(..., family = ”Gaussian”) 
to inla(..., family = ”Poisson”). Krainski 
et al. (2018) or Blangiardo and Cameletti (2015) provide 
further details on this. While the code change is simple, we 
have to note that the change of phenotype model impacts 
the interpretation of parameters. To this end, the R pack-
age INLA enables sampling from posterior distributions and 
these samples can be used to calculate parameters of interest. 
De Villemereuil et al. (2016) provide an excellent overview 
of this topic.

Limitations of the R package INLA

While the R package INLA enables flexible modelling 
of data from multiple trials and years, this might usually 
require increasing the model complexity by accounting for 
trial-specific residual variance or trial-specific spatial param-
eters—by increasing the number of hyper-parameters, that 
is, parameters controlling the likelihood and latent field, for 
example variance parameters. We have performed such an 
analysis with the real wheat data, where spatial variation in 
2011 and 2012 trials differed substantially in both depend-
ency with distance and variance. While this can be accom-
modated with the R package INLA, we highlight that the 
INLA method is best when it is based on a relative small 
number of non-Gaussian hyper-parameters, typically less 
than ten, and not exceeding 20. This limitation is due to the 
numerical integration of multidimensional posterior distri-
bution of hyper-parameters in INLA (Rue et al. 2017). Since 
there is limited information to estimate hyper-parameters 
from a single trial, a parsimonious solution would be to 
group similar trials together and estimate hyper-parameters 
per group instead of per trial. This is what we did for the 
2011 and 2012 trials with the real wheat data.

The main drawback with using R package INLA for ana-
lysing modern agricultural trials is that genome-wide marker 
data are highly dimensional, which leads to dense systems 
of equations. INLA is based on numerical approximations 
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and numerical methods for sparse matrices, and even though 
INLA can fit genomic models either via the genomic rela-
tionship matrix or via marker effects (Strandén and Garrick 
2009), there is substantial computational overhead to handle 
such models, which is not the case for the pedigree model 
which has a sparse precision matrix (Steinsland and Jensen 
2010; Henderson et al. 1984). This is why we chose to fit 
the genome-wide markers directly via the principal compo-
nent approach, which is similar to the proposal of Ødegård 
et al. (2018). Another option would be to fit a model with 
individual genetic effects following VanRaden (2008), but 
with a genomic relationship matrix that uses dense–sparse 
partitioning into core and non-core individuals (Misztal 
2016). More research is required in this area to increase the 
usefulness of the R package INLA for the modern breeding 
applications.

Finally, since the INLA method implements a full Bayes-
ian analysis, prior distributions have to be set for all param-
eters of the model. The marker variance estimates in the 
models for Chilean wheat data were quite small, and we 
expected this to be larger. Testing the same models using 
the informative penalized complexity priors (Simpson et al. 
2017) increased the mean marker variance. However, we 
have used the default prior distributions in the R package 
INLA for simplicity. It should be emphasized that using 
default priors is a choice as much as using any other prior 
or even using a specific distribution for the phenotype 
observations. Setting a prior based on the knowledge about 
the process is likely to improve the inference. Choosing a 
prior distribution for parameters in the model is not always 
straightforward, and more work is being done in the statistics 
community to improve this (Fuglstad et al. 2019).

Conclusion

This study showed how to fit established spatial models 
for analysing agricultural field trials using the open-source 
R package INLA. The results from the simulation study 
showed higher accuracy when spatial dependency was 
modelled and the highest increase in accuracy was reached 
using the discrete autoregressive ( AR1⊗ AR1 ) model and 
the continuous Gaussian random field (Matérn) model. Both 
models can be seamlessly fitted with the R package INLA, 
including joint modelling of multiple trials. The Matérn 
model and SPDE approach provide a flexibility with respect 
to field design that is not obviously available elsewhere and 
are particularly suitable for agricultural field trials that do 
not have a standard lattice-like structure such as the Nelder 
wheel design used in tree breeding. This flexibility opens 
opportunities for new field trial designs. It is freely avail-
able and yields interpretable parameters for the estimated 
spatial effects.
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