34 research outputs found

    Shallow Cumulus Cloud Fields Are Optically Thicker When They Are More Clustered

    Full text link
    Shallow trade cumuli over subtropical oceans are a persistent source of uncertainty in climate projections. Mesoscale organization of trade cumulus clouds has been shown to influence their cloud radiative effect (CRE) through cloud cover. We investigate whether organization can explain CRE variability independently of cloud cover variability. By analyzing satellite observations and high-resolution simulations, we show that increased clustering leads to geometrically thicker clouds with larger domain-averaged liquid water paths, smaller cloud droplets, and consequently, larger cloud optical depths. The relationships between these variables are shaped by the mixture of deep cloud cores and shallower interstitial clouds or anvils that characterize cloud organization. Eliminating cloud cover effects, more clustered clouds reflect up to 20 W/m2^2 more instantaneous shortwave radiation back to space

    Exploring Satellite-Derived Relationships between Cloud Droplet Number Concentration and Liquid Water Path Using a Large-Domain Large-Eddy Simulation

    Get PDF
    Important aspects of the adjustments to aerosol-cloud interactions can be examined using the relationship between cloud droplet number concentration (Nd) and liquid water path (LWP). Specifically, this relation can constrain the role of aerosols in leading to thicker or thinner clouds in response to adjustment mechanisms. This study investigates the satellite retrieved relationship between Nd and LWP for a selected case of mid-latitude continental clouds using high-resolution Large-eddy simulations (LES) over a large domain in weather prediction mode. Since the satellite retrieval uses the adiabatic assumption to derive the Nd, we have also considered adiabatic Nd (NAd) from the LES model for comparison. The joint histogram analysis shows that the NAd-LWP relationship in the LES model and the satellite is in approximate agreement. In both cases, the peak conditional probability (CP) is confined to lower NAd and LWP; the corresponding mean LWP (LWP) shows a weak relation with NAd. The CP shows a larger spread at higher NAd (>50 cm–3), and the LWP increases non-monotonically with increasing NAd in both cases. Nevertheless, both lack the negative NAd-LWP relationship at higher NAd, the entrainment effect on cloud droplets. In contrast, the model simulated Nd-LWP clearly illustrates a much more nonlinear (an increase in LWP with increasing Nd and a decrease in LWP at higher Nd) relationship, which clearly depicts the cloud lifetime and the entrainment effect. Additionally, our analysis demonstrates a regime dependency (marine and continental) in the NAd-LWP relation from the satellite retrievals. Comparing local vs large-scale statistics from satellite data shows that continental clouds exhibit only a weak nonlinear NAd-LWP relationship. Hence a regime-based Nd-LWP analysis is even more relevant when it comes to warm continental clouds and their comparison to satellite retrievals

    Aerosol-driven droplet concentrations dominate coverage and water of oceanic low level clouds

    Get PDF
    A lack of reliable estimates of cloud condensation nuclei (CCN) aerosols over oceans has severely limited our ability to quantify their effects on cloud properties and extent of cooling by reflecting solar radiation—a key uncertainty in anthropogenic climate forcing. We introduce a methodology for ascribing cloud properties to CCN and isolating the aerosol effects from meteorological effects. Its application showed that for a given meteorology, CCN explains three-fourths of the variability in the radiative cooling effect of clouds, mainly through affecting shallow cloud cover and water path. This reveals a much greater sensitivity of cloud radiative forcing to CCN than previously reported, which means too much cooling if incorporated into present climate models. This suggests the existence of compensating aerosol warming effects yet to be discovered, possibly through deep clouds

    Aerosol-driven droplet concentrations dominate coverage and water of oceanic low level clouds

    Get PDF
    A lack of reliable estimates of cloud condensation nuclei (CCN) aerosols over oceans has severely limited our ability to quantify their effects on cloud properties and extent of cooling by reflecting solar radiation—a key uncertainty in anthropogenic climate forcing. We introduce a methodology for ascribing cloud properties to CCN and isolating the aerosol effects from meteorological effects. Its application showed that for a given meteorology, CCN explains three-fourths of the variability in the radiative cooling effect of clouds, mainly through affecting shallow cloud cover and water path. This reveals a much greater sensitivity of cloud radiative forcing to CCN than previously reported, which means too much cooling if incorporated into present climate models. This suggests the existence of compensating aerosol warming effects yet to be discovered, possibly through deep clouds

    Radiological Mapping of Post-disaster Nuclear Environments Using Fixed-wing Unmanned Aerial Systems:A Study from Chernobyl

    Get PDF
    In the immediate aftermath following a large-scale release of radioactive material into the environment, it is necessary to determine the spatial distribution of radioactivity quickly. At present, this is conducted by utilizing manned aircraft equipped with large-volume radiation detection systems. Whilst these are capable of mapping large areas quickly, they suffer from a low spatial resolution due to the operating altitude of the aircraft. They are also expensive to deploy and their manned nature means that the operators are still at risk of exposure to potentially harmful ionizing radiation. Previous studies have identified the feasibility of utilizing unmanned aerial systems (UASs) in monitoring radiation in post-disaster environments. However, the majority of these systems suffer from a limited range or are too heavy to be easily integrated into regulatory restrictions that exist on the deployment of UASs worldwide. This study presents a new radiation mapping UAS based on a lightweight (8 kg) fixed-wing unmanned aircraft and tests its suitability to mapping post-disaster radiation in the Chornobyl Exclusion Zone (CEZ). The system is capable of continuous flight for more than 1 h and can resolve small scale changes in dose-rate in high resolution (sub-20 m). It is envisaged that with some minor development, these systems could be utilized to map large areas of hazardous land without exposing a single operator to a harmful dose of ionizing radiation

    Opportunistic experiments to constrain aerosol effective radiative forcing

    Get PDF
    Aerosol–cloud interactions (ACIs) are considered to be the most uncertain driver of present-day radiative forcing due to human activities. The nonlinearity of cloud-state changes to aerosol perturbations make it challenging to attribute causality in observed relationships of aerosol radiative forcing. Using correlations to infer causality can be challenging when meteorological variability also drives both aerosol and cloud changes independently. Natural and anthropogenic aerosol perturbations from well-defined sources provide “opportunistic experiments” (also known as natural experiments) to investigate ACI in cases where causality may be more confidently inferred. These perturbations cover a wide range of locations and spatiotemporal scales, including point sources such as volcanic eruptions or industrial sources, plumes from biomass burning or forest fires, and tracks from individual ships or shipping corridors. We review the different experimental conditions and conduct a synthesis of the available satellite datasets and field campaigns to place these opportunistic experiments on a common footing, facilitating new insights and a clearer understanding of key uncertainties in aerosol radiative forcing. Cloud albedo perturbations are strongly sensitive to background meteorological conditions. Strong liquid water path increases due to aerosol perturbations are largely ruled out by averaging across experiments. Opportunistic experiments have significantly improved process-level understanding of ACI, but it remains unclear how reliably the relationships found can be scaled to the global level, thus demonstrating a need for deeper investigation in order to improve assessments of aerosol radiative forcing and climate change

    Opportunistic experiments to constrain aerosol effective radiative forcing

    Get PDF
    Aerosol–cloud interactions (ACIs) are considered to be the most uncertain driver of present-day radiative forcing due to human activities. The nonlinearity of cloud-state changes to aerosol perturbations make it challenging to attribute causality in observed relationships of aerosol radiative forcing. Using correlations to infer causality can be challenging when meteorological variability also drives both aerosol and cloud changes independently. Natural and anthropogenic aerosol perturbations from well-defined sources provide “opportunistic experiments” (also known as natural experiments) to investigate ACI in cases where causality may be more confidently inferred. These perturbations cover a wide range of locations and spatiotemporal scales, including point sources such as volcanic eruptions or industrial sources, plumes from biomass burning or forest fires, and tracks from individual ships or shipping corridors. We review the different experimental conditions and conduct a synthesis of the available satellite datasets and field campaigns to place these opportunistic experiments on a common footing, facilitating new insights and a clearer understanding of key uncertainties in aerosol radiative forcing. Cloud albedo perturbations are strongly sensitive to background meteorological conditions. Strong liquid water path increases due to aerosol perturbations are largely ruled out by averaging across experiments. Opportunistic experiments have significantly improved process-level understanding of ACI, but it remains unclear how reliably the relationships found can be scaled to the global level, thus demonstrating a need for deeper investigation in order to improve assessments of aerosol radiative forcing and climate change
    corecore