26 research outputs found

    Tomographic Images of Klyuchevskoy Volcano P-Wave Velocity

    Get PDF
    Three-dimensional structural images of the P-wave velocity below the edifice of the great Klyuchevskoy group of volcanoes in central Kamchatka are derived via tomographic inversion. The structures show a distinct low velocity feature extending from around 20 km depth to 35 km depth, indicating evidence of magma ponding near the Moho discontinuity. The extensive low velocity feature represents, at least to some degree, the source of the large volume of magma currently erupting at the surface near the Klyuchevskoy group

    The Tolbachik volcanic massif: A review of the petrology, volcanology and eruption history prior to the 2012–2013 eruption

    Full text link

    Seismological Studies on the Mechanism of the Large Tolbachik Fissure Eruption, 1975-1976

    No full text
    Seismological observations provided consistent information on the course and mechanism of the complicated large fissure eruption at Tolbachik volcano in Kamchatka from July 6, 1975 to December 10, 1976. Seismicity indicates that the initial magnesian basalts were rising ten days before the eruption from depths of more than 20 km. The formation of new feeding dykes was accompanied by earthquake swarms which decreased sharply one to two days before the opening of new eruptive fissures. The seismological data indicate that the main source of the different erupted basalts (2 km) was a vast system (diameter ca. 80 km) of hydraulically connected magma chambers located in the lower crustal layers or in the crust-mantle transition layer

    Shiveluch volcano: seismicity, deep structure and forecasting eruptions (Kamchatka)

    No full text
    The deep structure, Wadati-Benioff zone (focal zone) geometry and the magma feeding system of Shiveluch volcano are investigated based on 1962–1994 detailed seismic surveillance. A focal zone beneath Shiveluch is dipping at an angle of 70Β° at depths of 100–200 km. Based on the revealed interrelations between seismicity at depths of 105–120 km and an extrusive phase of its eruptions in 1980 through 1994, it is inferred that primary magmas, periodically feeding the crustal chamber, are melted at depths of at least 100 km. An upsurge of extrusive-explosive activity at the volcano is preceded and accompanied by the increasing number and energy of both volcanic earthquakes beneath the dome and tectonic or volcano-tectonic earthquakes in the zones of NW-striking crustal faults near the volcano.The eruption of April 1993 has been the most powerful since 1964. It was successfully predicted based on interactive use of all seismic data. At the same time the influence of seismicity at depths of 105–120 km under the volcano on the style (and consequently on prediction) of its activity is decisive
    corecore